

Mark Scheme (Results)

Summer 2025

Pearson Edexcel International Advanced Level In Statistics (WST02) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2025

Question Paper Log number: P79509A
Publications Code WST02_01_2506_MS
All the material in this publication is copyright
© Pearson Education Ltd 2025

EDEXCEL IAL MATHEMATICS General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{\text{will}}$ be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer

Special notes for marking Statistics exams (for AAs only)

- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.

Question Number		Scheme	Ma	rks
1(a)	[F(1) = 1]	1 so] $k(6 \times 1^2 - 1^4) = 1$ leading to $k = \frac{1}{5}$ *	B1*	
				(1)
(b)	[1 - F(0)]	$1.6) = 1 - \frac{1}{5} (6 \times 0.6^2 - 0.6^4)$	M1	
	= 0.5939	92 awrt 0.594	A1	
				(2)
(c)(i)	$\frac{1}{5}(6m^2-$	$-m^4$) = $\frac{1}{2}$	M1	
	$2m^4-12$	$2m^2 + 5 = 0$ oe	A1	
(ii)	m = 0.67	711 awrt 0.671	A1	
				(3)
(d)	$\left[\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{6}{5}\right)\right]$	$\left(x^{2} - \frac{1}{5}x^{4}\right) = \left[\frac{12}{5}x - \frac{4}{5}x^{3}\right]$	M1	
	$\int \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{12}{5} \right)$	$\left(x - \frac{4}{5}x^3\right) = \left[\frac{12}{5} - \frac{12}{5}x^2 = 0\right]$	M1	
	x=1	, <u> </u>	A1	
				(3)
(e)	Mean <	"Median" < "Mode"	M1	\ /
	So negat	tive [skew]	A1ft	
				(2)
		Notes	Tota	l 11
(a)	B1*	for use of $F(1) = 1$ leading to the given answer (minimum required is $k(6-1) = 1$) Allow use of $F(1) - F(0) = 1$ e.g. $k(6-1) - k(0-0) = 1$		
(b)	M1	The answer is given so no incorrect working can be seen for using $1 - F(0.6)$ May be implied by $1 - \frac{1269}{3125}$ or $\frac{1856}{3125}$		
	A1	awrt 0.594 Allow $\frac{1856}{3125}$		
(c)(i)	M1	for setting $F(m) = 0.5$ Allow any letter (including x)		
(*)(1)	A1	for a correct 3TQ oe NB the values of a , b and c must be integers		
(ii)	A1	awrt 0.671 Allow $\sqrt{\frac{6-\sqrt{26}}{2}}$ (must reject other roots if seen)		
		NB It is possible to score M1A0A1		
(d)	M1	for differentiating F(x) with at least one $x^n \to x^{n-1}$ May be left in terms of k eg. $k(1)$ Condone missing k		
	M1	for differentiating twice with at least one $x^n \to x^{n-1}$ and setting = 0 oe May be left eg. $k(12-12x^2)=0$ Condone missing k	in terms	of k
	A1	Cao (Must reject $x = -1$ if seen)		
(e)	M1	a correct justification using the Mean and their Median and/or their Mode. This must for their values Allow use of figures e.g. $0.64 < 0.671 < 1$ Allow comparisons of and "mode" on its own. Comparison with 0.5 is M0 unless 0.5 is their median or mode		
	A1ft	a correct conclusion based on their comparison (Do not allow a conclusion that is no supported by their comparison)	ot fully	

Question		Scheme	Marks
Number			
2(a)	Poisson	with $\lambda = 10$	B1
(1.)	C 4		(1)
(b)	Custom	ers [enter the shop] singly/randomly/independently/at a constant rate	B1 (1)
()	II . 2 _	"10" II . 2 - "10"	(1)
(c)	$\Pi_0 \cdot \lambda -$	"10" $H_1: \lambda \neq$ "10"	B1ft (1)
	Γ- /		(1)
(d)	_	$[P(X_{*}, 2)] = \text{awrt } 0.0103$ [P(X, 2) = awrt 0.0293	M1
	P(X1	[P(X18) =] awrt 0.0270 $[P(X18) =]$ awrt 0.0143	M1
	X., 3 🔾	X18 oe	A1
			(3)
(e)	0.0103 +	-0.0143 = 0.0246	M1
	So 2.469	%	A1ft
			(2)
(f)		ot in the CR/Do not reject H ₀ /Not significant	M1
		insufficient evidence to suggest that the rate/number/amount of customers the shop has changed /[is] different oe	A1ft
	8	The state of the s	(2)
			\ - /
		Notes	Total 10
(a)	B1	Notes for Poisson/Po and $\lambda = 10$	
(a) (b)	B1 B1		Total 10
(b)	B1	for Poisson/Po and $\lambda = 10$ for a correct assumption (must have context of customers/people) Ignore irrelevant of statements both hypotheses correct. Must be correctly attached to H_0 and H_1 in terms of λ or λ	Total 10 or incorrect
		for Poisson/Po and $\lambda = 10$ for a correct assumption (must have context of customers/people) Ignore irrelevant of statements both hypotheses correct. Must be correctly attached to H_0 and H_1 in terms of λ or λ Allow $H_0: \lambda = 20$ $H_1: \lambda \neq 20$	or incorrect If t part a
(b)	B1	for Poisson/Po and $\lambda = 10$ for a correct assumption (must have context of customers/people) Ignore irrelevant of statements both hypotheses correct. Must be correctly attached to H_0 and H_1 in terms of λ or λ Allow $H_0: \lambda = 20$ $H_1: \lambda \neq 20$ for use of Po(10) to find the lower critical value. May be implied by awrt 0.0103 or	or incorrect If t part a
(b) (c)	B1 B1ft M1	for Poisson/Po and $\lambda=10$ for a correct assumption (must have context of customers/people) Ignore irrelevant of statements both hypotheses correct. Must be correctly attached to H_0 and H_1 in terms of λ or λ Allow $H_0: \lambda=20$ $H_1: \lambda\neq 20$ for use of Po(10) to find the lower critical value. May be implied by awrt 0.0103 or or a correct lower critical region (These must be seen in part (d))	Total 10 or incorrect If t part a awrt 0.0293
(b) (c)	B1	for Poisson/Po and $\lambda=10$ for a correct assumption (must have context of customers/people) Ignore irrelevant of statements both hypotheses correct. Must be correctly attached to H_0 and H_1 in terms of λ or λ Allow $H_0: \lambda=20$ $H_1: \lambda\neq 20$ for use of Po(10) to find the lower critical value. May be implied by awrt 0.0103 or or a correct lower critical region (These must be seen in part (d)) for use of Po(10) to find the upper critical value. May be implied by awrt 0.027 or an	or incorrect If the part a awrt 0.0293 wrt 0.0143 or
(b) (c)	B1 B1ft M1	for Poisson/Po and $\lambda=10$ for a correct assumption (must have context of customers/people) Ignore irrelevant of statements both hypotheses correct. Must be correctly attached to H_0 and H_1 in terms of λ or λ Allow $H_0: \lambda=20$ $H_1: \lambda\neq 20$ for use of Po(10) to find the lower critical value. May be implied by awrt 0.0103 or or a correct lower critical region (These must be seen in part (d))	or incorrect If t part a awrt 0.0293 wrt 0.0143 or part (d))
(b) (c)	B1 B1ft M1	for Poisson/Po and $\lambda=10$ for a correct assumption (must have context of customers/people) Ignore irrelevant of statements both hypotheses correct. Must be correctly attached to H_0 and H_1 in terms of λ or λ Allow $H_0: \lambda=20$ $H_1: \lambda\neq 20$ for use of Po(10) to find the lower critical value. May be implied by awrt 0.0103 or or a correct lower critical region (These must be seen in part (d)) for use of Po(10) to find the upper critical value. May be implied by awrt 0.027 or awrt 0.973 or awrt 0.9857 or a correct upper critical region (These must be seen in for a correct critical region oe e.g. $X < 4$ and $X > 17$ Allow $0 \le x \le 3$ and $18 \le x \le 2$ or $\{0, 1, 2, 3\}$ $\{18, 19,\}$ Condone use of () or [] for $\{\}$	or incorrect If the part a awrt 0.0293 wrt 0.0143 or part (d))
(b) (c)	B1 B1ft M1 M1	for Poisson/Po and $\lambda = 10$ for a correct assumption (must have context of customers/people) Ignore irrelevant of statements both hypotheses correct. Must be correctly attached to H_0 and H_1 in terms of λ or λ Allow $H_0: \lambda = 20$ $H_1: \lambda \neq 20$ for use of Po(10) to find the lower critical value. May be implied by awrt 0.0103 or or a correct lower critical region (These must be seen in part (d)) for use of Po(10) to find the upper critical value. May be implied by awrt 0.027 or a awrt 0.973 or awrt 0.9857 or a correct upper critical region (These must be seen in for a correct critical region oe e.g. $X < 4$ and $X > 17$ Allow $0 \le x \le 3$ and $18 \le x \le 2$ or $\{0, 1, 2, 3\}$ $\{18, 19,\}$ Condone use of () or [] for $\{\}$ Do not allow if written as probability statements Allow any letter. Accept $CR \le 3$ CR	Total 10 or incorrect u ft part a awrt 0.0293 wrt 0.0143 or part (d)) 0 $R \ge 18$
(b) (c)	B1 B1ft M1 M1	for Poisson/Po and $\lambda = 10$ for a correct assumption (must have context of customers/people) Ignore irrelevant of statements both hypotheses correct. Must be correctly attached to H_0 and H_1 in terms of λ or λ Allow $H_0: \lambda = 20$ $H_1: \lambda \neq 20$ for use of Po(10) to find the lower critical value. May be implied by awrt 0.0103 or or a correct lower critical region (These must be seen in part (d)) for use of Po(10) to find the upper critical value. May be implied by awrt 0.027 or awrt 0.973 or awrt 0.9857 or a correct upper critical region (These must be seen in for a correct critical region oe e.g. $X < 4$ and $X > 17$ Allow $0 \le x \le 3$ and $18 \le x \le 2$ or $\{0, 1, 2, 3\}$ $\{18, 19,\}$ Condone use of () or [] for $\{\}$ Do not allow if written as probability statements Allow any letter. Accept $CR \le 3$ C for adding the probabilities for the 2 tails of their CR together May be implied by a form of the probabilities for the 2 tails of their CR together May be implied by a form of the probabilities for the 2 tails of their CR together May be implied by a form of the probabilities for the 2 tails of their CR together May be implied by a form of the probabilities for the 2 tails of their CR together CR is a correct assumption of the probabilities for the 2 tails of their CR together CR is a correct assumption of the probabilities for the 2 tails of their CR together CR is a correct assumption of the probabilities for the 2 tails of their CR together CR is a correct assumption of the probabilities for the 2 tails of their CR together CR is a correct assumption of the probabilities for the 2 tails of their CR together CR is a correct assumption of the probabilities CR together CR is a correct assumption of the probabilities CR together CR is a correct assumption of the probabilities CR together CR is a correct assumption of the probabilities CR together CR is a correct assumption of the probabilities CR together CR is a correct assumption of the probabilities	Total 10 or incorrect u ft part a awrt 0.0293 wrt 0.0143 or part (d)) 0 $R \ge 18$
(b) (c) (d)	B1 B1ft M1 M1 A1	for Poisson/Po and $\lambda = 10$ for a correct assumption (must have context of customers/people) Ignore irrelevant of statements both hypotheses correct. Must be correctly attached to H_0 and H_1 in terms of λ or λ Allow $H_0: \lambda = 20$ $H_1: \lambda \neq 20$ for use of Po(10) to find the lower critical value. May be implied by awrt 0.0103 or or a correct lower critical region (These must be seen in part (d)) for use of Po(10) to find the upper critical value. May be implied by awrt 0.027 or at awrt 0.973 or awrt 0.9857 or a correct upper critical region (These must be seen in part (d)) for a correct critical region oe e.g. $X < 4$ and $X > 17$ Allow $0 \le x \le 3$ and $18 \le x \le 2$ or $\{0, 1, 2, 3\}$ $\{18, 19,\}$ Condone use of () or [] for $\{\}$ Do not allow if written as probability statements Allow any letter. Accept $CR \le 3$ of an adding the probabilities for the 2 tails of their CR together May be implied by a conserved conserved for their CR together May be implied by a conserved conserved for their CR together May be implied by a conserved conserved for their CR together May be implied by a conserved conserved for their CR together May be implied by a conserved conserved for their CR together May be implied by a conserved for their CR together May be implied by a conserved for their CR together May be implied by a conserved for their CR together May be implied by a conserved for their CR together May be implied by a conserved for their CR together May be implied by a conserved for their CR together May be implied by a conserved for their CR together May be implied by a conserved for their CR together May be implied by a conserved for the CR together CR togethe	Total 10 or incorrect u ft part a awrt 0.0293 wrt 0.0143 or part (d)) 0 $R \ge 18$ correct
(b) (c) (d)	B1 B1ft M1 M1 A1 A1ft	for Poisson/Po and $\lambda = 10$ for a correct assumption (must have context of customers/people) Ignore irrelevant of statements both hypotheses correct. Must be correctly attached to H_0 and H_1 in terms of λ or λ . Allow $H_0: \lambda = 20$ $H_1: \lambda \neq 20$ for use of Po(10) to find the lower critical value. May be implied by awrt 0.0103 or or a correct lower critical region (These must be seen in part (d)) for use of Po(10) to find the upper critical value. May be implied by awrt 0.027 or a awrt 0.973 or awrt 0.9857 or a correct upper critical region (These must be seen in for a correct critical region oe e.g. $X < 4$ and $X > 17$ Allow $0 \le x \le 3$ and $18 \le x \le 2$ or $\{0, 1, 2, 3\}$ $\{18, 19,\}$ Condone use of () or [] for $\{\}$ Do not allow if written as probability statements Allow any letter. Accept $CR \le 3$ Cofor adding the probabilities for the 2 tails of their CR together May be implied by a canswer awrt 0.0246 or ft their CR dependent on having found a 2 tailed CR in part (d) for a correct statement (ft their CR dependent on having found a 2 tailed CR in part (d) for a correct statement (ft their CR	Total 10 or incorrect or fit part a awrt 0.0293 wrt 0.0143 or part (d)) or R ≥ 18 correct 2 tailed CR)
(b) (c) (d)	B1 B1ft M1 M1 A1	for Poisson/Po and $\lambda=10$ for a correct assumption (must have context of customers/people) Ignore irrelevant of statements both hypotheses correct. Must be correctly attached to H_0 and H_1 in terms of λ or λ Allow $H_0: \lambda=20$ $H_1: \lambda\neq 20$ for use of Po(10) to find the lower critical value. May be implied by awrt 0.0103 or or a correct lower critical region (These must be seen in part (d)) for use of Po(10) to find the upper critical value. May be implied by awrt 0.027 or a awrt 0.973 or awrt 0.9857 or a correct upper critical region (These must be seen in for a correct critical region oe e.g. $X < 4$ and $X > 17$ Allow $0 \le x \le 3$ and $18 \le x \le 2$ or $\{0, 1, 2, 3\}$ $\{18, 19,\}$ Condone use of () or [] for $\{\}$ Do not allow if written as probability statements Allow any letter. Accept $CR \le 3$ of adding the probabilities for the 2 tails of their CR together May be implied by a consequence of their CR dependent on having found a 2 tailed CR in part (d) for a correct statement (ft their CR dependent on having found a 2 tailed CR in part (d) for a correct statement (ft their CR dependent on having found a 2 tailed CR in part (d) for a correct statement (ft their CR dependent on having found a 2 tailed CR in part (d) for a correct statement (ft their CR dependent on having found a 2 tailed CR in part (d) for a correct statement (ft their CR dependent on having found a 2 tailed CR in part (d) for a correct statement (ft their CR dependent on having found a 2 tailed CR in part (d) for a correct statement (ft their CR dependent on having found a 2 tailed CR in part (d) for a correct statement (ft their CR dependent on having found a 2 tailed CR in part (d) for a correct statement (ft their CR dependent on having found a 2 tailed CR in part (d) for a correct statement (ft their CR dependent on having found a 2 tailed CR in part (d) for a correct statement (ft their CR dependent CR dependent CR dependent CR dependent CR dependent CR dependent CR dep	Total 10 or incorrect of t part a awrt 0.0293 wrt 0.0143 or part (d)) or part (d))
(b) (c) (d)	B1 B1ft M1 M1 A1 A1ft	for Poisson/Po and $\lambda = 10$ for a correct assumption (must have context of customers/people) Ignore irrelevant of statements both hypotheses correct. Must be correctly attached to H_0 and H_1 in terms of λ or λ Allow $H_0: \lambda = 20$ $H_1: \lambda \neq 20$ for use of Po(10) to find the lower critical value. May be implied by awrt 0.0103 or or a correct lower critical region (These must be seen in part (d)) for use of Po(10) to find the upper critical value. May be implied by awrt 0.027 or a awrt 0.973 or awrt 0.9857 or a correct upper critical region (These must be seen in for a correct critical region oe e.g. $X < 4$ and $X > 17$ Allow $0 \le x \le 3$ and $18 \le x \le 2$ or $\{0, 1, 2, 3\}$ $\{18, 19,\}$ Condone use of () or [] for $\{\}$ Do not allow if written as probability statements Allow any letter. Accept $CR \le 3$ C for adding the probabilities for the 2 tails of their CR together May be implied by a canswer awrt 0.0246 or ft their CR dependent on having found a 2 tailed CR in part (d) for a correct statement (ft their CR no context needed but do not allow contradicting non contextual comments. May CR a correct contextual statement on its own. We ignore any comparison of numbers/pr	Total 10 or incorrect If the part a awrt 0.0293 wrt 0.0143 or part (d)) Or incorrect ER ≥ 18 correct 2 tailed CR) be implied by obabilities
(b) (c) (d)	B1 B1ft M1 M1 A1 A1ft	for Poisson/Po and $\lambda=10$ for a correct assumption (must have context of customers/people) Ignore irrelevant of statements both hypotheses correct. Must be correctly attached to H_0 and H_1 in terms of λ or λ Allow $H_0: \lambda=20$ $H_1: \lambda\neq 20$ for use of Po(10) to find the lower critical value. May be implied by awrt 0.0103 or or a correct lower critical region (These must be seen in part (d)) for use of Po(10) to find the upper critical value. May be implied by awrt 0.027 or a awrt 0.973 or awrt 0.9857 or a correct upper critical region (These must be seen in for a correct critical region oe e.g. $X < 4$ and $X > 17$ Allow $0 \le x \le 3$ and $18 \le x \le 2$ or $\{0, 1, 2, 3\}$ $\{18, 19,\}$ Condone use of () or [] for $\{\}$ Do not allow if written as probability statements Allow any letter. Accept $CR \le 3$ of adding the probabilities for the 2 tails of their CR together May be implied by a consequence of their CR dependent on having found a 2 tailed CR in part (d) for a correct statement (ft their CR dependent on having found a 2 tailed CR in part (d) for a correct statement (ft their CR dependent on having found a 2 tailed CR in part (d) for a correct statement (ft their CR dependent on having found a 2 tailed CR in part (d) for a correct statement (ft their CR dependent on having found a 2 tailed CR in part (d) for a correct statement (ft their CR dependent on having found a 2 tailed CR in part (d) for a correct statement (ft their CR dependent on having found a 2 tailed CR in part (d) for a correct statement (ft their CR dependent on having found a 2 tailed CR in part (d) for a correct statement (ft their CR dependent on having found a 2 tailed CR in part (d) for a correct statement (ft their CR dependent on having found a 2 tailed CR in part (d) for a correct statement (ft their CR dependent on having found a 2 tailed CR in part (d) for a correct statement (ft their CR dependent CR dependent CR dependent CR dependent CR dependent CR dependent CR dep	Total 10 or incorrect u ft part a awrt 0.0293 wrt 0.0143 or part (d)) CR ≥ 18 correct 2 tailed CR) be implied by obabilities be.

Question Number		Scheme	Marks
3(a)	np = 3 a	and $np(1-p) = 2.55$	M1
	p = 0.15	oe $n = 20$	A1 A1
			(3)
(b)	[B(40, 0.	2) so] $E(X) = 8$	B1
	$\int P(X > 8)$	$(3) = 1 - P(X_{*}, 8)$	M1
	= 0.4069	Calc: 0.40687 awrt 0.407	A1
			(3)
(c)(i)	$[Po(n \times p)]$	P(0) = P(0)	M1
	P(X1)	$2) =]1 - P(X_{,11})$	M1
	= 0.1119	Calc: 0.11192 awrt 0.112	A1
(ii)		n is large and p is small	B1
` '		<u> </u>	(4)
		Notes	Total 10
(a)	M1	for both $np = 3$ and $np(1-p) = 2.55$ Allow q to imply $1-p$	
	A1	either $p = 0.15$ oe or $n = 20$	
	A1	both $p = 0.15$ oe and $n = 20$	
(b)	D1	for E(X) = 8 Condone $\mu/np = 8$ May be implied by $40 \times 0.2 = 8$ or P(X > 8) or $1 - P(X + 1)$	$\zeta \leq 8$) or
(0)	B 1	P(X=8)	
(0)	M1		
(0)		P(X=8)	
(c)(i)	M1	P(X = 8) for writing or using 1-P(X,, 8)	
	M1 A1	P(X = 8) for writing or using $1 - P(X, 8)$ awrt 0.407 NB cao scores 3 out of 3	
	M1 A1 M1 M1	P(X = 8) for writing or using $1 - P(X, 8)$ awrt 0.407 NB cao scores 3 out of 3 for writing or using Po(8) May be implied by awrt 0.112 or 0.888 for writing or using $1 - P(X, 11)$ awrt 0.112 (NB exact binomial gives awrt 0.1004 and would score M0M1A0)	
	M1 A1 M1	P(X = 8) for writing or using $1 - P(X, 8)$ awrt 0.407 NB cao scores 3 out of 3 for writing or using Po(8) May be implied by awrt 0.112 or 0.888 for writing or using $1 - P(X, 11)$ awrt 0.112 (NB exact binomial gives awrt 0.1004 and would score M0M1A0) NB cao scores 3 out of 3	
	M1 A1 M1 M1	P(X = 8) for writing or using $1 - P(X, 8)$ awrt 0.407 NB cao scores 3 out of 3 for writing or using Po(8) May be implied by awrt 0.112 or 0.888 for writing or using $1 - P(X, 11)$ awrt 0.112 (NB exact binomial gives awrt 0.1004 and would score M0M1A0)	

Question Number			Scheme			Marks
4(a)	3, 6, 9, 12	2				B1
	[P(black)	$=$] $\frac{2}{7}$ and [P(white	$(2)=]\frac{5}{7}$			B1
		$= \left \left(\frac{5}{7} \right)^3 \right \text{ or } \left[P(X) \right]$	$=12)=\left]\left(\frac{2}{7}\right)^3$			M1
	P(X=6)	$= 3 \times \left(\frac{5}{7}\right)^2 \times \frac{2}{7}$				M1
	P(X=9)	$) =]3 \times \frac{5}{7} \times \left(\frac{2}{7}\right)^2$				M1
	X	3	6	9	12	
	$\mathbf{P}(X=x$	$\frac{125}{343}$ (0.3644)	150 343 (0.4373)	$\frac{60}{343}$ (0.1749)	$\frac{8}{343}$ (0.0233)	A1
	_		,		,	(6)
(b)	$\left(\frac{283}{343}\right)^n < 0.05$ oe					M1
	$n > 15.57$ or $n > \frac{\log(0.05)}{\log\left(\frac{283}{343}\right)}$ or $n > \log_{\left(\frac{283}{343}\right)}(0.05)$					dM1
	n = 16					A1
			NT 4			(3)
(a)	B1	for all 4 possible ou	Not tcomes and no ext			Total 9
	for writing or using $\frac{5}{7}$ and $\frac{2}{7}$. May be implied by a correct probability for $P(X = 6)$ or $P(X = 3)$ and $P(X = 12)$ Allow awrt 0.714 and awrt 0.286					or $P(X = 6)$ or $P(X = 9)$
	M1					rt 0.023
		M1 for p^3 where $0 May be implied by \frac{125}{343} or awrt 0.364 or \frac{8}{343} or awrt 0.023M1 for 3 \times p^2 \times (1-p) where 0 May be implied by \frac{150}{343} or awrt 0.437 or \frac{60}{343} or a$				
	M1		where $0 M$			and $\frac{60}{343}$ or awrt 0.175
	for all 4 probabilities correct and associated with the correct values. Need not be in a table but probabilities must be attached to the correct total. If decimals are used then they must be awrt 0.364, awrt 0.437, awrt 0.175 and awrt 0.023					
(b)	M1	for $\left(1 - \frac{60}{343}\right)^n < \frac{60}{343}$				
	dM1	Dependent on the property for $n > $ awrt 15.6 or the two trials betwee Allow = instead of $>$	$n > \frac{\log(0.05)}{\log\left(\frac{283}{343}\right)}$ en $n = 15$ and 16		$a > \log_{\left(\frac{283}{343}\right)}(0.05)$) ft their $\frac{283}{343}$ or for
	A1	cao (do not allow ar				

Question Number							
TAUTHOCI	Scheme				Marks		
5(0)	$\frac{2}{21} \int_0^k x \mathrm{d}x$ $\frac{2}{15} \int_k^6 (6 - \frac{1}{2})^4 \mathrm{d}x$		$\frac{1}{2}(k-0) \times \frac{2}{21}k$ and $\frac{1}{2}(6-k) \times \frac{2}{15}(6-k)$	For 0,, x ,, k $F(x) = \frac{1}{21}x^2$	M1		
	$\frac{2}{21} \left[\frac{x^2}{2} \right]_0^k$		$\frac{1}{2}(k-0) \times \frac{2}{21}k + \frac{1}{2}(6-k) \times \frac{2}{15}(6-k) = 1$	For $k < x$,, 6 $F(x) = \frac{2}{15} \left(6x - \frac{x^2}{2} \right) - \frac{7}{5} \text{ oe}$	M1		
-	$\frac{1}{21}k^2 + \frac{2}{15}\left(18 - \left(\frac{1}{2}\right)^2\right)$	$\left(6k - \frac{k^2}{2}\right) = 1$	$\frac{1}{21}k^{2} + $ oe $\frac{1}{15}(36 - 12k + k^{2})[=1]$	$\frac{1}{21}x^2 = \frac{2}{15}\left(6x - \frac{x^2}{2}\right) - \frac{7}{5}$	dM1		
			$4k^2 - 28k + 49 = 0 \text{ oe}$		dM1		
		e.g.	$(2k-7)^2 = 0$ leading to $k=3$	3.5 *	A1*		
					(5)		
(b) I	$E(X) = \frac{7}{2}$	$\frac{2}{11} \int_0^{3.5} x^2 \mathrm{d}x + \frac{2}{15} \int_{3.5}^6 ($	$6x-x^2$) dx		M1		
- /	$\frac{2}{21} \left[\frac{x^3}{3} \right]_0^{3.5}$	$\frac{x^3}{3}\Big _0^{3.5} + \frac{2}{15}\Big[3x^2 - \frac{x^3}{3}\Big]_{3.5}^6$ dM1					
-	$\frac{2}{21} \left(\frac{343}{24} \right)$	$\left(\frac{343}{24}\right) + \frac{2}{15}\left(36 - \left(\frac{147}{4} - \frac{343}{24}\right)\right) = \frac{19}{6}$ dM1A1					
(c) \[\]	$Var(X) = \frac{277}{24} - \left(\frac{19}{6}\right)^{2} = \frac{109}{72}$				M1A1		
	NotesTotal 11for writing/using the integral of $f(x)$ and setting = 1 ignore limits						
(a)	M1						
	M1	for an attempt at integration on either part with $x^n \to x^{n+1}$ ignore limits or adding the area of the 2 triangles and set = 1					
			on for $F(x)$ between $k \le x \le 6$ for substitution of k , 0 and 6 int	o the integral of $f(x)$			
	dM1						
	dM1 dependent on previous M1 for a correct 3TQ equal to 0 e.g. $\frac{4}{35}k^2 - \frac{12}{15}k + \frac{7}{5} = 0$ oe						
	35 15 5 A1* for solving the 3TQ leading to the given answer (Working must be shown)						

	NB :	Solution based on the assumption that $\frac{2}{21}k = \frac{2}{15}(6-k)$ scores M0M0dM0dM0A0				
	e.g. $\frac{2}{21}k = \frac{2}{15}(6-k)$ or $\frac{1}{2} \times 6 \times \frac{2}{21}k = 1$ or $\frac{1}{2}(k-0) \times \frac{2}{21}k + \frac{1}{2}(6-k) \times \frac{2}{21}k = 1$					
		Use of verification can score M1M1dM0dM0A0				
	e.g. $\frac{2}{21}$	$\left[\frac{x^2}{2}\right]_0^{3.5} + \frac{2}{15}\left[6x - \frac{x^2}{2}\right]_{3.5}^{6} \left[=1\right] \text{ or } \frac{1}{2}(3.5 - 0) \times \frac{2}{21}(3.5) + \frac{1}{2}(6 - 3.5) \times \frac{2}{15}(6 - 3.5) = 1$				
(b)	M1	for writing or using the integral of $xf(x)$ ignore limits but must be both parts				
	dM1	dependent on 1 st M1 for an attempt at integration on both parts with $x^n \to x^{n+1}$ ignore limits				
	13.54	dependent on previous M1 for substitution of 3.5, 0 and 6				
	dM1	$(\frac{49}{36} \text{ and } \frac{65}{36} \text{ is the minimum required to imply this mark})$				
	A1	allow awrt 3.17				
(c)	M1	for use of $E(X^2) - E(X)^2$ ft their $E(X)$				
	A1	allow awrt 1.51				

Question Number		Scheme	Marks			
6(a)	$\frac{5-2}{b-a} = \frac{1}{1}$ oe	$\frac{3}{16}$ oe or $1 - \left(\frac{2-a}{b-a} + \frac{b-5}{b-a}\right) = \frac{3}{16}$ $\frac{5-a}{b-a} = \frac{3}{16}$ oe	M1			
		$\frac{a+b}{2} = 6 \text{ oe}$	M1			
	a = -2 a	and $b = 14$ $a = 4.4$ and $b = 7.6$	A1 (3)			
(b)		$[cE(X)+1=3 \Longrightarrow]6c+1=3$	M1			
		$c = \frac{1}{3}$	A1			
			(2)			
(c)		$= \frac{(b-a)^2}{12} = \frac{64}{3} \text{ oe} \qquad \left[\text{Var} X = \frac{(b-a)^2}{12} = \frac{64}{75} \text{ oe} \right]$	B1ft			
			(1)			
(d)	$E(X^2) =$	$= "\left(\frac{64}{3}\right)" + 6^2 = \frac{172}{3} \text{ or } E(X^2) = "\left(\frac{64}{75}\right)" + 6^2 = \frac{2764}{75}$	M1A1			
			(2)			
(e)	$P\bigg(\frac{3}{2}X -$	$-b > a$ $\Rightarrow P(X > 8) = \frac{3}{8}$ $P(X > 8) = 0$	M1A1			
			(2)			
		Notes Notes	Total 10			
(a)	M1	for using P(2 < X < 5) = $\frac{3}{16}$ or P(a < X < 5) = $\frac{3}{16}$ to form a correct equation i May be implied by $b - a = 16$				
	M1	for using $E(X) = 6$ to form a correct equation in a and b May be implied by $a + b = 12$				
(b)	M1	for $a = -2$ and $b = 14$ or $a = 4.4$ and $b = 7.6$ for use of $cE(X) + 1 = 3$ or fully correct integration seen e.g. $c\int_{-2^{-}}^{-14^{-}} \frac{1}{16^{-}} x dx + 1 [= 3]$ May be implied by $c = \frac{1}{3}$				
	A1	Cao				
(c)	B1ft	ft their a and b Allow decimal answers correct to 3sf e.g 21.3				
(d)	M1	for use of $Var(X) + E(X)^2$ ft their $Var(X)$ or a fully correct integration seen e.g. $\int_{-2^n}^{14^n} \frac{1}{16^n} x^2 dx \left[= \frac{172}{3} \right]$ or $\int_{-4.4^n}^{17.6^n} \frac{5}{16} x^2 dx \left[= \frac{2764}{75} \right]$ ft their <i>a</i> and <i>b</i>				
	A1	for $\frac{172}{3}$ oe or awrt 57.3 or $\frac{2764}{75}$ or awrt 36.9 oe NB Answer must match the	method used			
(-)	M1	for P(X > 8) or P $\left(X > \frac{2("a" + "b")}{3}\right)$ ft their a and b May be implied by a correct answer				
(e)		3) It then it and it may be implied by a				

Question Number	Scheme						
7(a)	<i>X</i> ~ B(4	(0,0.3)	B1				
, (44)				(1)			
(b)	Constant	probability of buying insurance or Customers buy insurance independently	B1	(-)			
(0)			D1	(1)			
	[n/rr =	N DATE ON 10 0000 [DATE OF DATE OF DAT	M1	(1)			
(c)	[P(X,, 7) = P(X < 8) =]0.0553 [P(X,, 6) = P(X < 7) =]0.0238						
	So $r = 7$		A1				
/ 1\	D (200 0	0) 1 11 17(60 40)	3.54	(2)			
(d)		.3) implies N(60, 42)	M1				
	$\frac{t-0.5-}{t-0.5}$	$\frac{"60"}{2"} = -1.62 \text{ or } \frac{"60"-t+0.5}{\sqrt{"42"}} = 1.62$	M1M	[1			
	`	<u> </u>	B1				
	t = 50.0	01 so] t = 50	A1	(5)			
	7.7	0.2 H . 0.2	7.1	(5)			
(e)		$0.3 ext{ } H_1: p > 0.3$	B1				
	P(X1)	$1) =]1 - P(X_{,,} 10)$	M1				
	= 0.0978	or CR ≥ 11	A1				
	Reject Ho/Significant/In CR						
	Evidence to suggest that percentage/proportion/probability/number/amount of customers who buy insurance has increased oe						
				(5)			
		Notes	Tota	l 14			
(a)	B 1	Allow Binomial $n = 40 p = 0.3$					
(b)	B1	for a suitable assumption in context. Must include 'insurance' If multiple reasons given any irrelevant or incorrect reasons provided, they are non-contradictory	ven igno	re			
(c)	M1	for either probability. May be implied by $r = 7$					
	A1	Cao					
(d)	for writing or using N(60, 42) May be seen in a standardisation. If N(60, $\sqrt{42}$) writte			0			
. ,	and $\sqrt{42}$ used in a standardisation then award M1						
	M1 M1	for standardising using t or $t - 0.5$ or $t + 0.5$ with their mean and their standard deviation for a fully correct standardisation with their mean and their standard deviation	ation				
		for \pm 1.62 or better (calc: 1.620150314) seen or used.					
	B 1	Must be compatible with their standardisation					
	A1	Cao Do not allow $t = 50$ from incorrect working					
(e)	B1	for both hypotheses in terms of p or π					
	M1	for writing or using $1 - P(X_1, 10)$ May be implied by a correct CR					
	A1	for 0.0978 or correct CR					
	M1						
		on its own. a correct contextual statement with words in bold (Allow equivalent statements) ft the	neir				
	A1ft	probability/CR provided a binomial distribution is used	ion				
		If a two tailed test is used, then it is possible to score B0M1A1M1A1					
		$H_0: p = 0.3$ $H_1: p \neq 0.3$ B0					
	SC	[P(X11) =]1-P(X,, 10) or [P(X12) =]1-P(X,, 11) M1					
ı		$= 0.0978$ or $CR \ge 12$ A1					
		Do not reject H ₀ /Not significant/Not in CR M1					
		Proportion who buy insurance has not increased oe A1					