

Mark Scheme (Results)

Summer 2025

Pearson Edexcel International Advanced Level In Statistics S1 (WST01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2025
Question Paper Log Number P76176A
Publications Code WST01_01_2506_MS
All the material in this publication is copyright
© Pearson Education Ltd 2025

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{\text{ will be used for correct ft}}$
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Question	Scheme		
1 (a)	0.85	B1	
			(1)
(b)	$3X - 3 < X + 2 \rightarrow X < 2.5$	M1	
	[P(X < 2.5) =] 0.5	A1	
			(2)
(c)	$[E(X)=]1\times0.3+2\times0.2+3\times0.35+4\times0.15=$	M1	
	2.35	A1	
			(2)
(d)	$\left[E(X^2) = \right] 1^2 \times 0.3 + 2^2 \times 0.2 + 3^2 \times 0.35 + 4^2 \times 0.15 \left[= 6.65 \right]$	M1	
	$[Var(X) =] "6.65" - "2.35"^2$	M1	
	= 1.1275*	A1*	
			(3)
(e)	$\left[\operatorname{Var}(5-2X) = \right] 4.51$	B1	
			(1)
		To	tal 9
	Notes		
	Look out for answers given next to the questions		
(a)	B1 oe Must be identified as answer to part (a) (not just seen anywhere in the script). Is label.	gnore th	eir
(b)	M1 for $X < 2.5$ (condone $X > 2.5$, $X = 2.5$) or $X \le 2$ or for identifying $X = 1$ and $X = 2$ (circled, ticked, or otherwise clearly identified as the only 2 x -values that satisfy the inequal or $0.3 + 0.2$		
	A1 oe Correct answer scores 2 out of 2.		
(c)	M1 for an attempt to find E(X) with at least 3 correct products or terms with intention to add $0.3 + 0.4 + 1.05 + 0.6$ (may be seen in table at the start of the question) Division by 4 or any k ($k \ne 1$) is M0		
	A1 oe Correct answer scores 2 out of 2		
(d)	M1 for an attempt to find $E(X^2)$ with at least 3 correct products or terms with intention to add $0.3 + 0.8 + 3.15 + 2.4$ (may be seen in table at the start of the question or elsewhere) Division by 4 or any k ($k \ne 1$) is M0 6.65 on its own does not imply this mark		
	M1 for $6.65 - 2.35^2$ ft their E(X) and E(X ²).		
	A full calculation scores M1M1 e.g. $1^2 \times 0.3 + 2^2 \times 0.2 + 3^2 \times 0.35 + 4^2 \times 0.15 - 5.5225$		
	A1*cso dependent on both M marks for a fully correct expression for Var(X) leading to canswer 1.1275 with no incorrect working seen.	orrect g	iven
	$6.65 - 2.35^2 = 1.1275$ on its own scores M0M1A0		
(e)	B1 for 4.51 oe		

Question	Scheme			
2(a)	$\left[\sum x_B = \right] 54 \times 45 - 24 \times 47 \left[=1302\right]$ or $\frac{24 \times 47 + 30b}{54} = 45$	M1		
	$\left[\overline{x} = \right] \frac{54 \times 45 - 24 \times 47}{30} = 43.4 *$	A1*		
		(2)		
(b)	$\sqrt{\frac{66876 + 73826}{54} - 45^2} = \qquad \text{or} \qquad \sqrt{\frac{(66876 + 73826) - \frac{2430^2}{54}}{54}}$	M1		
	24.095 awrt 24.1	A1		
() (*)	N C 11 0 1 1 1	(2)		
(c)(i)	No effect as e.g. adding 2 to each does not change the variance	B1 B1		
(ii) (iii)	Increase as e.g. the total mark will increase Decrease as e.g. the mean mark of class <i>B</i> is closer to the mean mark of class <i>A</i>	B1		
(111)	Decrease as e.g. the mean mark of class b is closer to the mean mark of class A	(3)		
	Notes	Total 7		
(a)	M1 for a correct method to find the total marks for class B			
(a)	<u>or</u> for a correct equation for $b = 2430$ but not $30b = 1302$ on its own			
	A1* a fully correct method shown leading to 43.4			
	For the equation in b there should be 1 line of intermediate working between the equation and the			
	given answer.			
SC:	Verification method e.g. $\frac{24 \times 47 + 30 \times 43.4}{54} = 45$ scores M1A0			
(b)	M1 for a correct method to find the standard deviation including root			
	A1 awrt 24.1 correct answer scores 2 out of 2 allow $s = awrt 24.3$			
(c)(i)	 B1 for no effect and a correct reason: Spread/variation/range or difference (in marks) remains the same o.e. Addition has no effect/only multiplication/division affects the variance o.e. Variance not affected by coding on its own is B0 			
	B1 for increase and a correct reason:			
	• Total/mark/score/∑x increases o.e.			
(ii)	• Mean of class B increases (by 2 marks) o.e.			
(11)	• Total/mark/score/∑x for class B increases (by 60 marks) o.e. Incorrect statements score B0 e.g. "The mean (of all 54 students) increases by 2" or e.g. "Total for			
	class B increases by 48 marks"			
	Ignore calculation if seen, but do not allow increases by 1.11 on its own to score the	mark here.		
	B1 for decrease and correct reason:			
(:::)	• Mean/marks of class <i>B</i> now closer to mean/marks of class <i>A</i> o.e.			
(iii)	Values/marks/scores are closer together o.e.			
	• Less spread/variation between values/marks/scores (for class A and class B) o.e.			

Question	Scheme		
3 (a)	eg They represent / analyse / solve (real world problems)	B1	
	They improve understanding / simplify (the real world)		
	Can be repeated/ adapted / refined		
	To show the relationship between variables/show trends		
	10 show the relationship between variables/show tiends		(1)
	330 25 ²		(1)
(b)	$[S_{ww}] = 10036.45 - \frac{339.25^2}{12} = 445.57 \text{ (to 2 decimal places)*}$	B1*	
	12		(1)
	_01.55		(1)
(c)	$S_{td} = \frac{-91.55}{11.5}$ or $S_{td} = 14.4 - \frac{29.5 \times 9.1}{12}$ or $S_{dd} = \frac{445.57}{11.5^2}$ or $S_{dd} = 75.9 - \frac{29.5^2}{12}$	M1	
		A 1 A 1	
	$S_{td} = -7.9608$ awrt -7.96 $S_{dd} = 3.3691$ awrt 3.37	A1A1	
(4)	01.55		(3)
(d)	$[r=]\frac{-91.55}{\sqrt{445.57 \times 26.43}}$ or $[r=]\frac{-7.9608}{\sqrt{3.3691} \times 26.43}$	M1	
	·		
	=-0.8436 awrt -0.844	A1	
		7.10	(2)
(e)	As the temp erature increases, gas/consumption decreases	B1ft	(1)
(f)	01.55		(1)
(1)	$b = \frac{-91.55}{26.43} [= -3.4638]$	M1	
	$a = \frac{339.25}{12}$ -"-3.4638"× $\frac{9.1}{12}$ [= 30.897] or $a = \text{awrt } 28.3$ -"-3.4638"× $\text{awrt } 0.76$	M1	
	w = -3.46t + 30.9 *	A1*	
		ĺ	(3)
(g)	11.5d = -3.46t + 30.9 oe eg $d = -0.301t + 2.69$	B1	
			(1)
(h)(i)	$2.0852(m^3)$ awrt 2.09	B1	
(ii)	the gas consumption will decrease by 0.3 m³	B1ft	(2)
		Tr-4	(2)
	D1 for one velid reason why models are used	1 ota	al 14
(a)	B1 for one valid reason why models are used B0 for comments relating to time , cost , and predictions only. "Easy"/ "Easy to use" on it	ite own i	s BO
(a)	Ignore extraneous non-contradictory comments once B1 has been scored.	its Own 1	3 00
(b)	B1* Correct numerical method to find S_{ww} shown with an answer awrt 445.57		
(c)	M1 Method to find S_{dd} or S_{td} (implied by awrt -7.96 or awrt -7.97 or awrt 3.37	3.38)	
	A1 awrt -7.96 or awrt 3.37 condone awrt -7.97 or awrt 3.38 for this mark		
	A1 awrt -7.96 and awrt 3.37		
(d)	M1 for a correct method with $S_{ww} \neq 10036.45$		
	A1 awrt –0.844 correct answer scores 2 out of 2 an answer of awrt –0.843 scores	M1A0	
(2)	B1ft for correct contextual interpretation with bold words o.e., ft "their (d)"		
(e)	Allow as gas increases, temp (erature) decreases o.e. B0 for "their (d)" outside the range [-1, 1] Interpreting numerically as a gradient is	ΒO	
(f)	M1 for a correct numerical expression to find the value of b	. D∪.	
(1)	M1 for a correct method to find a allow "their b " or just b in the expression		
	w - awrt 28.3 = "-3.46" (t - awrt 0.76)		
		o fraction	ns.
(g)	B1 Any correct equation seen (ISW) (allow fractions). allow $d = -0.3t + 2.69$, $d = \frac{-3.46t + 31}{11.5}$		
(h)(i)	B1 awrt 2.09		
(ii)	B1 dwit 2.09 B1ft for decrease awrt 0.3m³ must include units ft their changed gradient B0 for decrease	se by _0	$3m^3$
(11)	12 In the decrease awit 6.5m must include units it their changed gradient by for decrease	oy -0.	J111

Question	Scheme	
4 (a)	$0.2 = \frac{P(C \cap D)}{0.45}$	M1
	$[P(C \cap D) =] 0.09$	A1
		(2)
(b)	$0.59 = P(C) + 0.45 - "0.09"$ [$\rightarrow P(C) = 0.59 - 0.45 + "0.09"$]	M1
	= 0.23	A1
		(2)
	Notes	Total 4
	Mark (a) and (b) together	
(a)	M1 for substitution of 0.2 and 0.45 into a correct equation for $P(C \cap D)$ (allow any rearrangement)	
	A1 oe correct answer scores 2 out of 2 Must be clearly identified as the answer to part (a). A correct Venn diagram on its own is not sufficient.	
	M1 for correct substitution of 0.59, 0.45 and "their a" into $P(C \cup D) = P(C) + P(D) - P(C)$	$-P(C\cap D)$
(b)	Implied by "their (b)" – "their (a)" = 0.14 0.59 = P(C) + 0.45 is M0	
	Only ft 0 < "their (a)" < 1 If "their (a)" is outside this range, then M0	
	A1 oe correct answer scores 2 out of 2	

Question		Scheme			
	Speed (km/h)	Number of cars	fd		
	20, x < 25	54	10.8		
5 (a)	25 ,, x < 30	90	18		M1
	30,, x<40	60	6		
	$90x = 54 \times 10$	or $18x = 10.8 \times 10$			M1
	height of 2 nd tallest bar =	6 (cm)			A1
					(3)
(b)	$30+15+\frac{2}{15}\times6$	= 45.8 , therefore	e <u>46</u> cars.		M1, A1
					(2)
(c)	$[Q_2 = 25 +] \frac{58.5}{90} \times 5$				M1
	= 28.25			awrt <u>28.3</u>	A1
	24.75				(2)
(d)(i)	$[Q_3 = 30 +] \frac{24.75}{60} \times 10$				M1
	= 34.12	25		awrt <u>34.1–34.3</u>	A1
(ii)	"34.125" – 25.14			.00.01	M1
	= 8.99			awrt <u>9.0 – 9.1</u>	A1 (4)
(e)	$Q_2 - Q_1(3.11) < Q_3 - Q_2(3.11)$	5 875)			(4) M1
(0)	therefore, positively skew				Al
	mererore, positivery skew	Cu			(2)
(f)	The suggestion is not sui	table as part (e) shows the	data is skewed	/not symmetric.	B1ft
					(1)
	N/1 C '1 CC1 C	/ C '1 ('C' / '	25 + 20	.1 . 11 . 1	Total 14
(a)		/w <u>or</u> for identifying/using		is the tallest bar	
		tallest bar or an answer of		5 1 2nd 11 1	
	M1 identifying/using 25,				
	Implied by correct working	he f.d. of the 3 rd bar is 6, s	Allow equivale	nt ratio equation.	
		y scores M1M0A0	0 00 - 10 - 0 (ni na uwii is mi iwiuAu.	
(b)	M1 for $30 + 15 + k$ when		y 45.8) or k	+219-(54+90+30)	
(~)		e an integer). Correct answ			
(c)	M1 for $\frac{58.5}{90} \times 5$ or $\frac{11}{11}$	<u> </u>			
	Allow use of 113 instead	of 112.5			
	A1 for awrt 28.3	0.00			1.0
(d)(i)	M1 for $\frac{24.75}{60} \times 10$ or		or $\frac{35.25}{60} \times 10^{-10}$	or $\frac{40-m}{204-168.75} = \frac{40-m}{204-168.75}$	$\frac{10}{60}$
	Allow use of any value fr	om 168.75 to 169.5	2 2	2 1 1 1 1	
(\$2)	A1 awrt 34.1 to awrt 34.3 an answer in this range scores 2 out of 2 unless obvious incorrect working M1 for "their (d)(i)" substituted into "Q ₃ " – awrt 25.1				
(ii)		Allow 9 if correct work			
(e)		which must follow from t		ust have 25 14 < " O ₂ "<	<"O ₂ "
(6)		n their figures being consist			
<u></u>	Allow calculation of estin	nated mean awrt 30.6 > "2	8.3" so +ve for	M1A1	
(f)	B1ft For not suitable and	a correct supporting reaso	n which is cons	sistent with "their (e)"	

Question	Scheme			
6(a)(i)	$P(X > 508) = P(Z > \frac{508 - 502}{3} [= 2])$	M1		
	= 0.0228 awrt 0.0228	A1		
(40)	D(406 V 500) 1 2 10 00001 10 07701 (1 10 07701)	(2) M1		
(ii)	$P(496 < X < 508) = 1 - 2 \times "0.0228" \text{ or } "0.9772" - (1 - "0.9772")$			
	= 0.9544 awrt 0.954	A1ft (2)		
(b)	$"0.0228"^2 \times (1 - "0.0228")^2 \times 6$	M1 dM1		
	= 0.002978 (calc gives 0.002965) awrt 0.00297 or awrt 0.00298	A1		
		(3)		
(c)	$\frac{1038.51 - 1024}{\sigma} = 1.0364$	M1		
	$\sigma = \frac{1038.51 - 1024}{1.0364} = 14.000 \text{ (calc } 13.999)*$	A1*		
		(2)		
(d)(i)	$\pm \left(\frac{k-502}{3}\right) \qquad \text{and} \qquad \pm \left(\frac{1024-2k}{14}\right)$	M1		
	$\frac{k-502}{3} = \frac{1024-2k}{14}$ oe e.g. $14k-7028 = 3072-6k$	M1		
	k = 505	A1		
(ii)	$P(X > 505) = P(Z > \frac{"505" - 502}{3} [=1])$	M1		
	= 0.1587 awrt <u>0.159</u>	A1		
	Notos	(5) Total 14		
(a)(i)	Notes M1 for standardising with 508, 502 and 3 allow ±	1011114		
(=7()	A1 awrt 0.0228 (dependent on M1 scored for standardising). Answer must be in part (a)(i).			
(ii)	M1 ft their 0.0228			
	A1ft awrt 0.954 or from calculator 0.954499 so allow 0.9545 Correct answer score	es 2 out of 2.		
	ft their part (a) i.e. $1-2 \times$ "their (a)" provided $0 <$ "their (a)" < 0.5	1 1 1 1		
(b)	M1 For an expression in the form $p^2 \times (1-p)^2 \times A$ where A is an integer, A1 and p is a probability			
	Allow A written in alternative forms eg 4C_2			
	M1 dep on first M1 for $A = 6$ oe			
	A1 awrt 0.00297 or awrt 0.00298 (allow in standard form). Correct answer scores 3 out	of 3.		
(c)	M1 an equation in the form $\frac{1038.51-1024}{\sigma} = z$ or $\frac{14.51}{\sigma} = z$ with 1.03,, $ z $,, 1.04			
2 = 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A1* for a correct expression for σ with $z = 1.0364$ or better (calc 1.036433) seen and awrt 14			
(d)(i)	M1 for both standardisations seen or used in an equation Allow use of their 14 from part (c)			
	M1 Correct equation with compatible signs - need not be simplified Allow use of their 14 A1 505 (allow awrt 505 coming from "their 14" used).	nom part(c)		
	M1 for standardising with "505", 502 and 3 or with "1010", 1024 and 14 allow ±,			
(ii)	ft their value of k			
	may be implied by a correct answer			
	A1 awrt 0.159 Correct answer scores M1A1 in (d)(ii)			

Question Number	Scheme		
7(a)	2 White		
<i>,</i> (a)	2/8 White		
	$\frac{3}{9}$ White $\frac{3}{6}$		
	$\frac{6}{8}$ Yellow		
	3	B1 M1A1	
	$\frac{6}{9}$ White	BI WIII	
	9 Yellow		
	$\frac{5}{8}$ Yellow	(3)	
(b)	$\frac{3}{9} \times \frac{6}{8} + \frac{6}{9} \times \frac{3}{8}$, $= \frac{1}{2}$ oe	M1, A1	
	9 8 9 8 , 2		
		(2)	
(c)	$1 - \frac{6}{9}$ "x" $\frac{5}{8}$ " or $\frac{3}{9}$ "+ $\frac{6}{9}$ "x" $\frac{3}{8}$ ", $= \frac{7}{12}$ oe	M1, A1	
	9 8 9 9 8 12		
(1)		(2)	
(d)	$\begin{bmatrix} \frac{3}{9} \times \frac{2}{8} \\ \frac{7}{12} \end{bmatrix}, = \frac{1}{7} \text{ oe}$		
	$\frac{9}{7}$, $=\frac{1}{7}$ oe	M1, A1	
	$\frac{1}{12}$		
	12	(2)	
(e)		(2)	
(6)	$\frac{\frac{1}{2}n}{2} \times \frac{\frac{1}{2}n-1}{1} \times \frac{\frac{1}{8}n}{2} \times \frac{\frac{1}{8}n}{2} = \frac{3}{225}$ $\frac{4x}{2} \times \frac{4x-1}{2} \times \frac{3x}{2} \times \frac{x}{2} = \frac{3}{225}$	M1M1	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	$ \frac{\frac{1}{2}n}{n} \times \frac{\frac{1}{2}n-1}{n-1} \times \frac{\frac{3}{8}n}{n-2} \times \frac{\frac{1}{8}n}{n-3} = \frac{3}{235} \qquad \frac{4x}{8x} \times \frac{4x-1}{8x-1} \times \frac{3x}{8x-2} \times \frac{x}{8x-3} = \frac{3}{235} $ $ \frac{3}{128}n^{3}(\frac{1}{2}n-1) = \frac{3}{235}n(n-1)(n-2)(n-3) \left[\rightarrow 63n^{3} - 3198n^{2} + 8448n - 4608 = 0 \right] $	dM1	
	$\left[235n^2 = 256(n-1)(n-3) \Rightarrow \right] 21n^2 - 1024n + 768 = 0$	A 1	
	$\underline{\mathbf{or}} \left[(3n-6)(21n^2 - 1024n + 768) \right] \left[\Rightarrow (n \neq 2 : .) \right] 21n^2 - 1024n + 768 = 0$	A1	
		(4)	
(-)	Notes	Total 13	
(a)	B1 1st branches correct oe allow 0.3 and 0.6		
	M1 for one correct 2 nd branch 2/8 and 6/8 oe or 3/8 and 5/8 oe		
(b)	A1 for both correct 2 nd branches 2/8 and 6/8 and 3/8 and 5/8 oe M1 for adding the two correct products of probabilities ft their probabilities		
(D)	A1 0.5 oe Correct answer from no obvious incorrect working scores M1A1		
(c)	M1 correct method used. ft their probabilities		
(0)	A1 allow awrt 0.583		
(d)	M1 for $\frac{p}{\sqrt[n]{12}}$ or $\frac{n}{7}$ where $n < 7$. num>denom is M0. Indeped. e.g. $\frac{\sqrt[n]{3}}{\sqrt[n]{12}} \times \sqrt[n]{2} \times \sqrt[n]{2}$ is M0		
` ,	M1 for $\frac{p}{\sqrt{7}}$ or $\frac{n}{7}$ where $n < 7$. num>denom is M0. Indeped. e.g. $\frac{9}{\sqrt{7}}$ is M0		
	A1 allow awrt 0.143		
(e)	M1 for setting up the product of 4 probabilities with all of the denominators correct and equating to $3/235$ For the first term allow $\frac{1}{2}$ oe (condone RHS method in terms of n)		
	M1 a fully correct equation (condone RHS method in terms of <i>n</i>)		
	dM1 (dep on 2nd M mark) for forming a correct equation in terms of n removing all		
	terms in <i>n</i> from the denominator. For RHS method, only award if <i>x</i> is replaced by $\frac{n}{8}$		
	A1 (dep on all M marks) for a correct equation with $b = -1024$ and $c = 768$		
NB:	Trial and improvement method $\rightarrow n = 48$ satisfies the given conditions is M0M0M0A0		