

Please check the examination details below before entering your candidate information

Candidate surname

Other names

Centre Number

Candidate Number

--	--	--	--

--	--	--	--	--

Pearson Edexcel International Advanced Level

Thursday 12 June 2025

Morning (Time: 1 hour 30 minutes)

Paper
reference

WME03/01

Mathematics

International Advanced Subsidiary/Advanced Level Mechanics M3

You must have:

Mathematical Formulae and Statistical Tables (Yellow), calculator

Total Marks

**Candidates may use any calculator permitted by Pearson regulations.
Calculators must not have the facility for symbolic algebra manipulation,
differentiation and integration, or have retrievable mathematical formulae
stored in them.**

Instructions:

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
– *there may be more space than you need*.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Whenever a numerical value of g is required, take $g = 9.8 \text{ m s}^{-2}$, and give your answer to either two significant figures or three significant figures.

Information:

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 7 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
– *use this as a guide as to how much time to spend on each question*.

Advice:

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

Turn over ►

P76410A

©2025 Pearson Education Ltd.
Y:1/1/1/

P 7 6 4 1 0 A 0 1 2 4

Pearson

1:

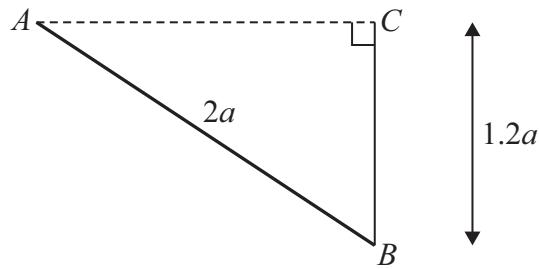


Figure 1

A uniform rod AB has mass m and length $2a$.

The end A is freely hinged to a fixed point.

A light elastic string has modulus of elasticity $2mg$ and natural length L .

One end of the elastic string is attached to the end B of the rod.

The other end of the elastic string is attached to a fixed point C , where AC is horizontal.

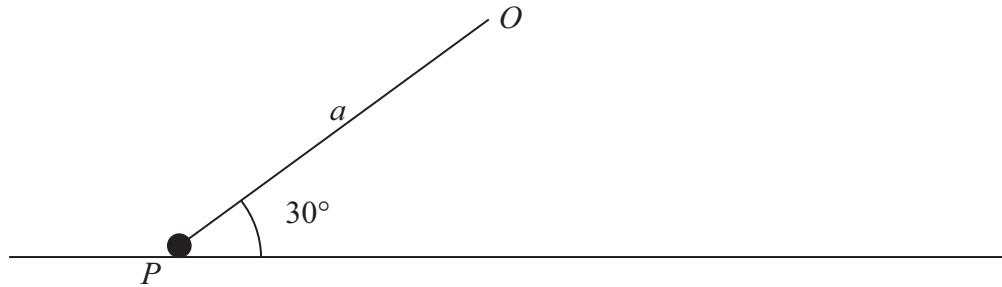
The rod rests in equilibrium with the elastic string taut and vertical and $BC = 1.2a$, as shown in Figure 1.

(a) Find, in terms of m and g , the tension in the elastic string.

(3)

(b) Find L in terms of a .

(4)



Question 1 continued

(Total for Question 1 is 7 marks)

2:

Figure 2

One end of a light inextensible string of length a is attached to a fixed point O which lies above a smooth horizontal table.

The other end is attached to a particle P of mass m .

The particle P moves on the table in a horizontal circle with constant angular speed $\sqrt{\frac{g}{2a}}$ and with the string taut.

The string makes a constant angle of 30° with the table, as shown in Figure 2.

Find, in terms of m and g , the magnitude of the force exerted on P by the table.

(7)

Question 2 continued

(Total for Question 2 is 7 marks)

3: A particle P moves along the x -axis.

At time t seconds, where $t \geq 1$

- the displacement of P from O is x metres in the positive x direction, where $x < \frac{1}{2}$
- the velocity of P is $vm s^{-1}$ in the positive x direction
- the acceleration of P is $am s^{-2}$ in the positive x direction

Given that

$$a = 4x - 2$$

and that when $t = 1$, $x = 0$ and $v = 1$

(a) find v in terms of x , (4)
(b) find v in terms of t . (5)

Question 3 continued

(Total for Question 3 is 9 marks)

4:

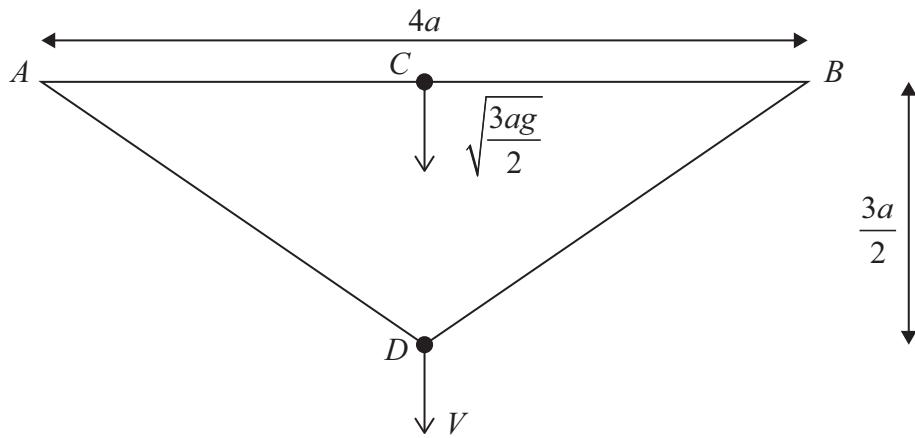


Figure 3

A light elastic string has natural length $3a$ and modulus of elasticity mg . One end of the string is attached to the point A and the other end is attached to the point B , where AB is horizontal and $AB = 4a$.

A particle P of mass m is attached to the midpoint of the string. The particle P is held at rest at C , the midpoint of AB .

The particle P is then projected vertically downwards from C with speed $\sqrt{\frac{3ag}{2}}$

At the instant when P reaches the point D , where $CD = \frac{3a}{2}$, the speed of P is V , as shown in Figure 3.

(a) Show that the elastic energy stored in the string increases by $\frac{1}{2}mga$, as P moves downwards from C to D . (3)

Air resistance is modelled as a constant force of magnitude $\frac{1}{5}mg$

Using the model and the work-energy principle,

(b) find V in terms of a and g . (5)

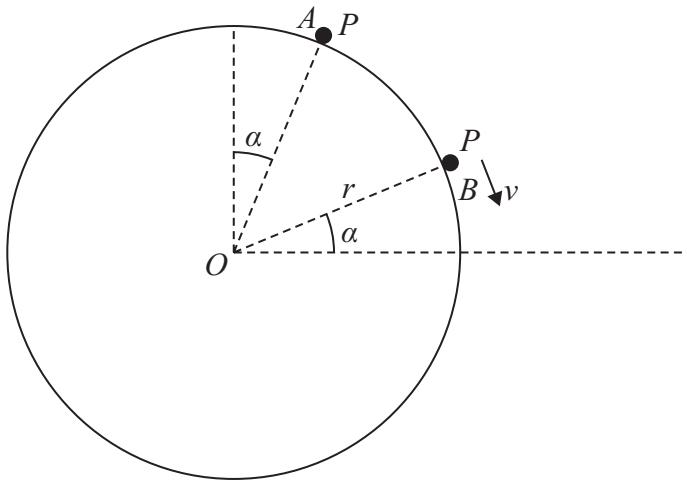
Question 4 continued

Question 4 continued

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA



Question 4 continued

(Total for Question 4 is 8 marks)

5:

Figure 4

A fixed solid sphere has centre O and radius r .

A particle P of mass m is held at the point A on the smooth outer surface of the sphere, where OA makes an angle α , where $\alpha < 45^\circ$, with the upward vertical.

The particle is released from rest and leaves the surface of the sphere at the point B , where OB makes an angle α with the horizontal, with speed v , as shown in Figure 4.

Air resistance is assumed to be negligible.

(a) Show that $v^2 = 2gr(\cos \alpha - \sin \alpha)$ (3)

(b) Show that $\tan \alpha = \frac{2}{3}$ (4)

At the instant when P crosses the horizontal through O , P is moving at an angle θ to the horizontal.

(c) Show that $\cos \theta = \frac{2}{\sqrt{39}}$ (7)

Question 5 continued

Question 5 continued

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question 5 continued

(Total for Question 5 is 14 marks)

6: (a) Show, using algebraic integration, that the centre of mass of a uniform **solid** hemisphere H of radius a is a distance $\frac{3}{8}a$ from O , the centre of its plane face.
 [You may assume that the volume of the hemisphere is $\frac{2}{3}\pi a^3$]

(5)

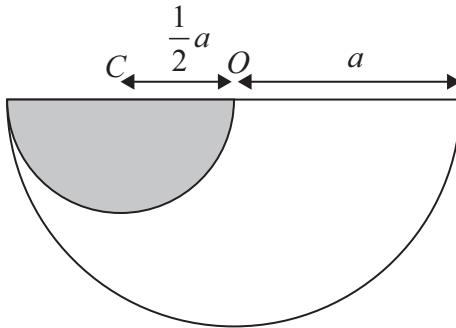


Figure 5

A uniform **solid** S is formed by removing a smaller **solid** hemisphere of radius $\frac{1}{2}a$ from H such that

- the plane face of the smaller hemisphere has centre C and is part of the plane face of H
- $OC = \frac{1}{2}a$

Figure 5 shows a cross section of S , where S is the **unshaded** part.

(b) Show that the centre of mass of S is $\frac{45}{112}a$ from the line through O and C .

(4)

The solid S rests in equilibrium with its curved surface in contact with a rough horizontal plane, as shown in Figure 6.

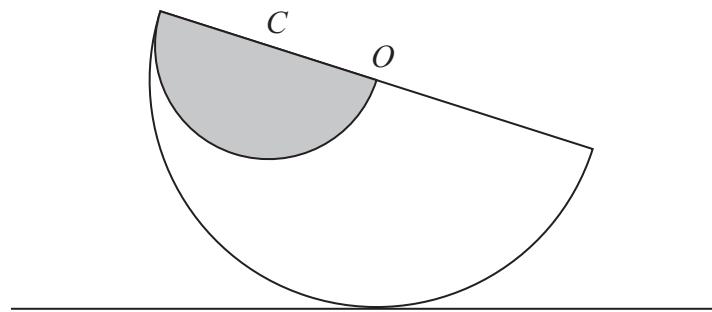


Figure 6

The angle between CO and the horizontal is θ .

(c) Find the exact value of $\tan \theta$.

(5)

Question 6 continued

Question 6 continued

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question 6 continued

(Total for Question 6 is 14 marks)

7:

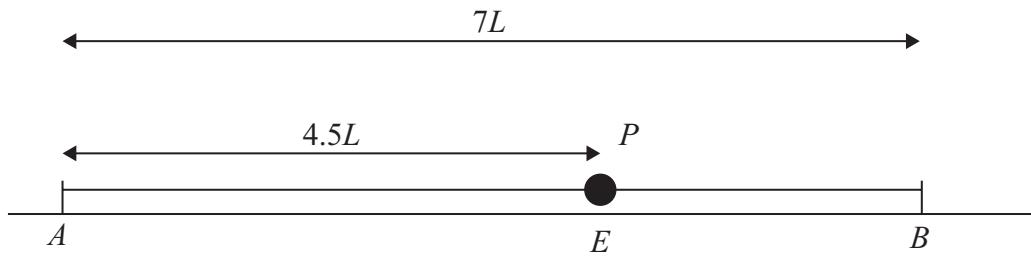


Figure 7

A particle P of mass m lies at rest on a smooth horizontal table.

One end of a light elastic string, of natural length $3L$ and modulus of elasticity mg , is attached to P . The other end is attached to a point A on the table.

One end of a second light elastic string, of natural length $2L$ and modulus of elasticity $2mg$, is also attached to P . The other end is attached to a point B on the table where $AB = 7L$.

The particle P rests in equilibrium on the table at the point E , where AEB is a straight line and $AE = 4.5L$, as shown in Figure 7.

The particle P is now held at the point C on AB , where $AC = 5L$, and released.

(a) Show that P moves with simple harmonic motion with centre E and period $\pi\sqrt{\frac{3L}{g}}$ (7)

(b) Find, in terms of L and g , the maximum speed of P . (3)

(c) Find, in terms of L and g , the exact amount of time, in any one oscillation, for which the speed of P is less than or equal to $\sqrt{\frac{gL}{12}}$ (6)

Question 7 continued

Question 7 continued

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question 7 continued

Question 7 continued

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(Total for Question 7 is 16 marks)

TOTAL FOR PAPER IS 75 MARKS

