

Mark Scheme (Results)

Summer 2024

Pearson Edexcel GCE In Mathematics (9MA0) Paper 01 Pure Mathematics

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2024 Question Paper Log P75693A Publications Code 9MA0_01_2406_MS* All the material in this publication is copyright © Pearson Education Ltd 2024

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 100.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol \sqrt{will} be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- Where a candidate has made multiple responses <u>and indicates which response</u> <u>they wish to submit</u>, examiners should mark this response.
 If there are several attempts at a question <u>which have not been crossed out</u>, examiners should mark the final answer which is the answer that is the <u>most</u> <u>complete</u>.

- 6. Ignore wrong working or incorrect statements following a correct answer.
- 7. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used.

General Principles for Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles)

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^2+bx+c) = (x+p)(x+q)$, where |pq| = |c|, leading to $x = \dots$

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. Formula

Attempt to use the correct formula (with values for *a*, *b* and *c*)

3. Completing the square

Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Questi	ion			Scheme			Marks	AOs
1			g(3)=	$3(3)^3 - 20(3)^2 + 3$	(k+17)+k=0		M1	3.1a
	Ī			$4k - 48 = 0 \Longrightarrow$	<i>k</i> =		M1	1.1b
				${k = }12$			A1	1.1b
	-						(3)	
							(3 marks)
				Ν	otes			
Note:	Igne	ore any	use of $f(x)$ in	n place of $g(x)$ t	hroughout.			
M1:	Atte	empts g	s(3) = 0 to set	up a linear equat	ion in k . The = 0	may implied	by their value	ue of <i>k</i> .
	Exp May Mis Atte	bect to so y be sco ssing bra empting	ee 3 substitute ored for e.g. 81 ackets may be g(-3) = 0 sc	d for x at least tw $-180 + 3(k + 1)^{2}$ recovered. sores M0 but note	vice but condone 7) + $k = 0$ e that the second	minor slips c M1 is availab	opying the f ble.	unction.
	If al and	lgebraic set =0	division is att Condone slip	empted, they nee is in their calcula	ed to achieve a lin tions.	near remainde	er in <i>k</i> only	
	As	a minim	num, expect to	see $3x^2 + \lambda x$, λ	$\neq 0$ as their quot	tient leading	to a linear	
	ren For	referen	ce, the correct	= 0 (the = 0 may division is	be implied by th 2^{2}	eir value for l	k).	
					$r = 3\sqrt{3r^3 - 7}$	$\frac{-11x + k - 10}{20x^2 + (k + 17)}$	$\frac{1}{2} x + k$	
					$2u^3$	$20x^{-1}$ ($x + 1$))	
					$\frac{5\lambda}{-1}$	$\frac{9x}{1x^2 + (k+17)}$	$) \mathbf{r} + \mathbf{k}$	
					_1	$1x^{2} + 33x$	JATK	
						$\frac{1x + 35x}{(k - 16)}$	(x+k)	
						(k-16)	(x - 3k + 48)	
							$\frac{4k-48}{4k-48}$	= 0
	You Her	ı may al e, the N	lso see variation 11 is scored with	ons on the table b hen the sum of b	elow. oth coefficients of	of x are equate	ed to $(k + 17)$)
			$3x^2$	-11x	$-\frac{k}{3}$			
		x	$3x^3$	$-11x^{2}$	$-\frac{k}{3}x$			
		-3	$-9x^{2}$	33 <i>x</i>	k	$33 - \frac{k}{3} =$	$= k + 17 \operatorname{scor}$	es M1
M1:	Sco Do	red for a not be c	attempting to a concerned abo	solve a linear equ ut the process, e.	uation in <i>k</i> having g. –81+180–3(<i>k</i>	g attempted g $k+17 + k = 0$	$(\pm 3) = 0$ $k = \dots \text{ so}$	cores M1.
	Via The	division $a = 0$ ma	n they must ha	ive a linear remain by their value for	inder in k set = 0 k in all approach	ies.		
A1:	Obt	ains {k	= 12 only. Do	o not accept e.g.	$\frac{40}{4}$ Allow slips i	n working to	be recovered	1.
	Cor	ndone e.	g. $x = 12$ prov	vided it has come	from a linear eq	uation in <i>k</i> .		
	Not	e that e.	.g. $3(3)^3 - 20($	$(3)^2 + 3(k+17) +$	$k\left\{=0\right\} \rightarrow k=12$	and		

 $81-180+3k+51+k = 0 \rightarrow k = 12$ are sufficient to imply M1M1A1.

Questio	n Scheme	Marks	AOs		
2(a)	$\frac{\frac{1}{2}(\frac{1}{2}-1)}{2!}(\pm 9x)^2 \text{ or } \frac{\frac{1}{2}(\frac{1}{2}-1)(\frac{1}{2}-2)}{3!}(-9x)^3$	M1	1.1b		
	$(1-9x)^{\frac{1}{2}} = 1 + \frac{1}{2}(-9x) + \frac{\frac{1}{2}(\frac{1}{2}-1)}{2!}(\pm 9x)^{2} + \frac{\frac{1}{2}(\frac{1}{2}-1)(\frac{1}{2}-2)}{3!}(-9x)^{3}$	A1	1.1b		
	$(1-9x)^{\frac{1}{2}} = 1 - \frac{9}{2}x - \frac{81}{8}x^2 - \frac{729}{16}x^3$	A1	1.1b		
		(3)			
(b)	Expansion is valid for $ x < \frac{1}{9}$ and $x = -\frac{2}{9}$ is outside this range.	B1	2.4		
		(1)			
		(4	4 marks)		
	Notes				
(a)					
M1: 1	For an attempt at the binomial expansion with $n = \frac{1}{2}$ and obtains the cor	rect structur	e for		
t	erm 3 or term 4. Award for the correct coefficient with the correct power	er of <i>x</i> .			
6	e.g. $\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(\lambda x\right)^2$ or $\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{3!}\left(\lambda x\right)^3$ where $\lambda \neq 1$				
(1	Condone missing or incorrect brackets around the <i>x</i> terms but the binomial coefficients must be correct. Allow 2! and/or 3! or 2 and/or 6.				
]	Do not allow notation such as $\begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix}, \begin{pmatrix} \frac{1}{2} \\ 2 \end{pmatrix}$ unless these are interpreted correctly.				
A1: (Correct unsimplified expression as shown but the bracketing must be correct unless any missing brackets are implied by subsequent work. May be implied by a correct simplified expression.				
	OR allow this mark for at least 2 correct simplified terms from $-\frac{9}{2}x$, $-\frac{81}{8}x^2$ and $-\frac{729}{16}x^3$				
A1:	$1 - \frac{9}{2}x - \frac{81}{8}x^2 - \frac{729}{16}x^3$ or simplified equivalent. Correct answer with no working can				
	score full marks. Ignore any extra terms and allow the terms to be listed or in a different order. Apply isw once a correct expansion is seen. Condone $+-$ (equivalent to listing). Allow recovery if applicable e.g. if an "x" is lost then "reappears".				
	Allow decimal equivalents $1-4.5x-10.125x^2-45.5625x^3$ provided the	y are exact.			
	Allow mixed numbers $1 - 4\frac{1}{2}x - 10\frac{1}{8}x^2 - 45\frac{9}{16}x^3$				

Note: You may see attempts via direct expansion, but these will be scored using the main scheme, ignoring absence of powers on the 1s. The below attempts both score first M1A1. If you are unsure, send to review.

$$(1-9x)^{\frac{1}{2}} = 1^{\frac{1}{2}} + \frac{1}{2} \left(1^{-\frac{1}{2}} \right) (-9x) + \frac{\frac{1}{2} \left(\frac{1}{2} - 1 \right)}{2!} \left(1^{-\frac{3}{2}} \right) (-9x)^2 + \frac{\frac{1}{2} \left(\frac{1}{2} - 1 \right) \left(\frac{1}{2} - 2 \right)}{3!} \left(1^{-\frac{5}{2}} \right) (-9x)^3$$
$$9^{\frac{1}{2}} \left(\frac{1}{9} - x \right)^{\frac{1}{2}} = 3 \left[\left(\frac{1}{9} \right)^{\frac{1}{2}} + \frac{1}{2} \left(\left(\frac{1}{9} \right)^{-\frac{1}{2}} \right) (-x) + \frac{\frac{1}{2} \left(\frac{1}{2} - 1 \right)}{2!} \left(\left(\frac{1}{9} \right)^{-\frac{3}{2}} \right) (-x)^2 + \frac{\frac{1}{2} \left(\frac{1}{2} - 1 \right) \left(\frac{1}{2} - 2 \right)}{3!} \left(\left(\frac{1}{9} \right)^{-\frac{5}{2}} \right) (-x)^3 \right]$$

(b)

B1: Expansion is valid for
$$|x| < \frac{1}{9}$$
 or $|x|$, $\frac{1}{9}$ and $x = -\frac{2}{9}$ is outside this range.

Requires:

- an acceptable range of validity given
- an acceptable comparison of $-\frac{2}{9}$ or $\frac{2}{9}$ with their range leading to e.g. "not valid".

Examples of acceptable alternatives include:

- (Valid for) |9x| < 1 or |9x|, 1 and as 9x = -2 (the expansion is) not valid.
- (Valid for) $|x| < \frac{1}{9}$ or |x|, $\frac{1}{9}$ and as $\frac{2}{9} > \frac{1}{9}$ (or $-\frac{2}{9} < -\frac{1}{9}$) the expansion is not valid.
- (Valid for) $-\frac{1}{9} < x < \frac{1}{9}$ and $x = -\frac{2}{9}$ is too small/big (condoned as minimally acceptable).
- (Series converges for) |-9x|, 1 and as -9x = 2 the series will diverge.
- (Valid for) $|x| < \frac{1}{9}$ but $\left|-\frac{2}{9}\right| > \frac{1}{9}$ so $-\frac{2}{9}$ cannot be used.

Do not accept vague statements such as "it is too big", "it is outside the range" without any mention of what the range is. $-\frac{2}{9} < -\frac{1}{9}$ alone is insufficient evidence (without any mention of what the range is) and scores B0. An attempt to evaluate the expansion and compare with $\sqrt{3}$ is not acceptable on its own.

Question	Scheme	Marks	AOs
3 (a)	$\{f(3.6) =\} 3.6 + \tan\left(\frac{1}{2}(3.6)\right) = -0.686 < 0$ and $\{f(3.7) =\} 3.7 + \tan\left(\frac{1}{2}(3.7)\right) = 0.211 > 0$	M1	1.1b
	<u>Change of sign</u> and function is <u>continuous</u> in the interval \Rightarrow <u>conclusion</u> e.g. "there is a root in [3.6, 3.7]" *	A1*	2.4
		(2)	
(b)	Use of $\tan\left(\frac{1}{2}x\right) \rightarrow \dots \sec^2\left(\frac{1}{2}x\right)$	M1	1.1b
	$\left\{ \mathbf{f}'(x) = \right\} \ 1 + \frac{1}{2} \sec^2\left(\frac{1}{2}x\right)$	A1	1.1b
		(2)	
(c)	Attempts $3.7 - \frac{3.7 + \tan\left(\frac{1}{2}(3.7)\right)}{"1 + \frac{1}{2}\sec^2\left(\frac{1}{2}(3.7)\right)"} = \dots$ (N.B. f (3.7) = 0.211 and f '(3.7) = 7.58)	M1	1.1b
	$\alpha = $ awrt 3.672	A1	1.1b
		(2)	
		((6 marks)
	Notes		
(a) M1: Att (w) and So of So of A1*: Th Acc Do "x Co	 tempts both f(3.6) and f(3.7) or a narrower interval that contains the rochich may be implied by sight of f(3.6) = and f(3.7) = with at least d obtains at least one correct to 1 significant figure (rounded or truncated considers their signs. Use of degrees is M0. me examples for consideration of sign (which are also sufficient for the reasoning for the A1): f(3.6) = -0.6 < 0 and f(3.7) = 0.2 > 0 f(3.6) = -0.7, f(3.7) = 0.2 "change in sign" r reference f(3.6) = -0.68626 and f(3.7) = 0.21194 is mark requires: both f(3.6) and f(3.7) correct to 1 significant figure (rounded or truncated values correct to 1 significant figure if using a narrower interval) a reference to continuity {of f(x)} a (minimal) conclusion, e.g. "hence root", "proved", √, #, QED, cept as a minimum, "change of sign, continuous, root". not condone "change in sign therefore continuous" or other incorrect is is continuous", "the interval is continuous" – these score A0. 	ot 3.672 t one correc ed) for their e change of runcated) (or $3.6 < \alpha < 3.$ statements s	t) interval sign part r their 7 uch as

- (b) **Note:** Their answer to (b) may be seen in part (c) provided that they have not clearly attempted part (b) incorrectly, e.g., an attempt at $f^{-1}(x)$ in (b).
- M1: For $\tan\left(\frac{1}{2}x\right) \rightarrow \dots \sec^2\left(\frac{1}{2}x\right)$ o.e. The brackets are not required. You may see attempts at the quotient rule but the method should be correct and they should reach something equivalent to $\dots \sec^2\left(\frac{1}{2}x\right)$. e.g. $\tan\left(\frac{1}{2}x\right) = \frac{\sin\left(\frac{1}{2}x\right)}{\cos\left(\frac{1}{2}x\right)} \rightarrow \frac{k\cos\left(\frac{1}{2}x\right)\cos\left(\frac{1}{2}x\right) - -k\sin\left(\frac{1}{2}x\right)\sin\left(\frac{1}{2}x\right)}{\cos^2\left(\frac{1}{2}x\right)}$ where k is a

positive constant scores M1. If the formula is seen it must be correct.

A1:
$$\{f'(x)=\} 1+\frac{1}{2}\sec^2\left(\frac{1}{2}x\right)$$
 o.e. which may be unsimplified and apply isw.
The brackets are not required. There is no need for $f'(x) =$ just look for the expression.
Note that $\{f'(x)=\} \frac{3}{2}+\frac{1}{2}\tan^2\left(\frac{1}{2}x\right)$ is correct and appears occasionally.
 $\{f'(x)=\} 1+\frac{1}{2}\sec\frac{1}{2}x^2$ is condoned for M1A0 only but $1+\frac{1}{2}\left(\sec\frac{1}{2}x\right)^2$ scores M1A1.
(c) $f(3.7)$

M1: Attempts $3.7 - \frac{f(3.7)}{f'(3.7)}$ and obtains a value following through on their f'(x) as long as it is a

"changed" function in terms of *x*.

Just stating $3.7 - \frac{f(3.7)}{f'(3.7)} = \dots$ without evidence of use of 3.7 in f(x) (note that this evidence

might come from part (a)) and in their f'(x) is M0 unless implied by a correct value for both f(x) and f'(x) or by their final answer.

Must be a correct N-R formula used – you may need to check their values – accuracy of at least 3s.f. rounded or truncated required.

Allow if attempted in degrees. For reference in degrees f (3.7) = 3.73... and f '(3.7) = 1.50... and gives $\alpha = 1.21...$

Note that the full N-R accuracy is 3.672051617.

For reference, the value of α is approximately 3.673194406... and scores M0A0 without other valid work.

A1: For awrt 3.672 Ignore any subsequent iterations.

Quest	ion Scheme	Marks	AOs	
4	$\frac{(x+h)^2 - x^2}{h} = \frac{x^2 + 2xh + h^2 - x^2}{h}$	M1	2.1	
	$=\frac{2xh+h^2}{h}$	A1	1.1b	
	$\frac{dy}{dx} = \lim_{h \to 0} \frac{2xh + h^2}{h} = \lim_{h \to 0} (2x + h) = 2x *$	A1*	2.5	
		(3)		
		(,	3 marks)	
	Notes			
Note:	Throughout the question allow use of δx for <i>h</i> or any other letter e.g. α If δx is used then you can condone e.g. $\delta^2 x$ for δx^2 as well as condoning	f used consis e.g. poorly fo	tently. ormed δ's	
M1:	Begins the process by writing down the gradient of the chord and attem	pts to expand	the	
	correct squared bracket – you can condone "poor" squaring e.g. $(x+h)$	$x^2 = x^2 + h^2$ bu	it the $-x^2$	
	must be present.			
AI:	Reaches a correct fraction o.e. with the x^2 terms cancelled out and with	no algebraic	errors,	
	e.g. $\frac{x + 2xh + h - x}{h}$, $2x + h$ is correct.	1		
A1*:	: Completes the process by applying a limiting argument and deduces that $\frac{dy}{dx} = 2x$ with no			
	errors seen. They must have = $2x$ and not just $\lim_{h\to 0} 2x$ to complete the pr	oof.		
	$\frac{dy}{dx}$ = or an equivalent e.g. $f'(x)$ = or "Gradient =" must be evident so	newhere in		
	their working or final line. If $f'(x)$ is used then there is no requirement	to see $f(x) d$	efined	
	first. Condone e.g. $\frac{dy}{dx} \rightarrow 2x$ or $f'(x) \rightarrow 2x$.			
	Condone missing brackets to allow e.g. $\frac{dy}{dx} = \lim_{h \to 0} \frac{2xh + h^2}{h} = \lim_{h \to 0} 2x + h$	= 2 <i>x</i>		
	Do not allow $h = 0$ if there is never a reference to $h \rightarrow 0$.			
	e.g. $\frac{dy}{dx} = \lim_{h \to 0} \frac{2xh + h^2}{h} = \lim_{h \to 0} 2x + 0 = 2x$ is acceptable			
	but e.g. $\frac{dy}{dx} = \frac{2xh + h^2}{h} = 2x + 0 = 2x$ is not unless $h \to 0$ is seen.			
	The $h \rightarrow 0$ does not need to be present throughout the proof e.g. appear must appear at least once.	on every lin	e but	
	They must reach $2x + h$ at the end and not $\frac{2xh + h^2}{h}$ (without the <i>h</i> 's c	ancelled) to c	omplete	
	the limiting argument.			

Ques	tion Scheme	Marks	AOs		
5(a	a) $f(x) = \frac{2x-3}{x^2+4} \Rightarrow f'(x) = \frac{2(x^2+4)-2x(2x-3)}{(x^2+4)^2}$	M1	1.1b		
	or $f(x) = (2x-3)(x^{2}+4)^{-1} \Rightarrow f'(x) = 2(x^{2}+4)^{-1} - 2x(2x-3)(x^{2}+4)^{-2}$	A1	1.1b		
	$f'(x) = \frac{-2x^2 + 6x + 8}{\left(x^2 + 4\right)^2}$	A1	1.1b		
		(3)			
(b	$-2x^{2} + 6x + 8 = 0 \Longrightarrow -2(x+1)(x-4) = 0 \Longrightarrow x = -1, 4$	B1ft (M1 on EPEN)	1.1b		
	Chooses correct region for their numerator and their critical values	M1	1.1b		
	x < -1 or x > 4	A1	2.2a		
		(3)			
		(6 marks)		
	Notes				
(a) M1: A1: A1:	Attempts the quotient rule to obtain an expression of the form $\frac{P(x^2+4)-(x^2+1)}{(x^2+1)^2}$ condoning bracketing errors/omissions or minor slips (e.g. $2x+3$ or $x+4$). Condone, e.g. $\{f'(x)=\}\frac{2(x^2+4)-2x(2x-3)}{(x^2+4)}$ provided an incorrect formulation of the product rule applied to $(2x-3)(x^2+4)^{-1}$ to obtain an explicit $\{f'(x)=\}P(x^2+4)^{-1}-Qx(2x-3)(x^2+4)^{-2}$ $P,Q>0$ condoning bracketing or minor slips (e.g. $2x+3$ or $x+4$). Fully correct differentiation in any form with correct bracketing which may subsequent working. $f'(x)=\frac{-2x^2+6x+8}{(x^2+4)^2}$ or simplified equivalent, e.g. numerator terms in a definition of the answer is not given so allow candidates $f'(x)=\frac{2(x^2+4)-2x(2x-3)}{(x^2+4)^2} \rightarrow \frac{-2x^2+6x+8}{(x^2+4)^2}$ for the final mark. The definition of the final mark is the final answer. Allow recovery from incorrect expansion of the final answer.	$\frac{Qx(2x-3)}{4}^{2}$. Ila is not que ression of th g errors/om be implied ifferent ordet ect answer is to go from e iominator (: al derivativ the denomin	P, Q > 0 oted. ne form issions by er. s seen. 2.g. $x^2 + 4)^2$ e and nator.		
	recovered in the final answer. Allow recovery from incorrect expansion of the denominator. The f'(x) = must appear at some point but allow e.g. " $\frac{dy}{dx}$ = " Note that just e.g. f'(x) = $\frac{-2(x^2 - 3x - 4)}{(x^2 + 4)^2}$ without sight of a correct derivative in the correct				
	form scores A0.				

- Note: it is possible to score B0M1A1 in this question due to the demand to "use algebra". (b) Note: if their numerator from (a) is not a 3 term quadratic then no marks can be scored in (b). **B1ft:** Uses algebra to solve their $ax^2 + bx + c...0$ with $a, b, c \neq 0$ where ... is any equality or inequality, finding the correct, real critical values for their 3TQ. The ... 0 may be implied by their method. They must show their working for this mark, so expect to see factorisation, substitution into the correct quadratic formula or completing the square. Correct values for their quadratic do **not** imply this mark. Approaches via factorisation must have completely correct factorisation, e.g. $-2x^{2}+6x+8 = 0 \implies -2(x+1)(x-4) = 0 \implies x = -1, 4 \text{ scores B1ft}$ $-2x^{2}+6x+8 = 0 \Rightarrow (2x+2)(4-x) = 0 \Rightarrow x = -1, 4$ scores B1ft $-2x^{2}+6x+8 = 0 \implies x^{2}-3x-4 = 0 \implies (x+1)(x-4) = 0 \implies x = -1, 4 \text{ scores B1ft}$ $-2x^{2}+6x+8 = 0 \implies (2x+2)(x-4) = 0 \implies x = -1, 4 \text{ scores B0ft}$ $-2x^{2}+6x+8 = 0$ \Rightarrow (x+1)(x-4) = 0 \Rightarrow x = -1, 4 scores B0ft Selects the "correct" region for their critical values and their *a* from part (a). Must be *x* not f(x)M1: CVs may have been found using a calculator and may be implied if they are correct for their 3TQ. CVs may be incorrect due to errors in their calculations (but not errors in their method). • For $\alpha < 0$ and roots $\alpha < \beta$ they need e.g. $x < \alpha$, $x > \beta$ (or e.g. x, α or $x \dots \beta$) For a > 0 and roots $\alpha < \beta$ they need e.g. $\alpha < x < \beta$ (or e.g. $x \dots \alpha, x, \beta$) Do not be overly concerned about their use of = , > , < in reference to their $-2x^2 + 6x + 8...0$ for this mark or for the A1. Indicating the region on a sketch is not sufficient. Allow, $/ \text{ or } / \text{ and } / \cup / \cap \text{ for the M1}$. If they have complex roots (or they use the discriminant to find there are no real roots) then they can score this mark for concluding: • if a < 0, "all values for x (have f decreasing)" or "f is always decreasing" or $x \in \mathbb{R}$
 - if a > 0, "no values for x (have f decreasing)" or "f is never decreasing"

A1: Correct solution x < -1 or x > 4 (allow x, -1 or $x \dots 4$) coming from the correct numerator. Do not isw if they go on to select e.g. x > 4 or combine incorrectly to 4 < x < -1Allow full marks to be scored in (b) from an incorrect denominator (but it must be positive for

all x), e.g. from
$$f'(x) = \frac{-2x^2 + 6x + 8}{(x+4)^2}$$
 or $f'(x) = \frac{-2x^2 + 6x + 8}{4x^2}$ or $f'(x) = \frac{-2x^2 + 6x + 8}{x^2 + 16}$

Examples: Just "x < -1 or x > 4" stated scores B0M1A1

 $-2x^{2} + 6x + 8 = 0 \implies -2(x+1)(x-4) = 0 \implies x < -1, x > 4 \text{ scores B1ftM1A1}$

$$-2x^{2} + 6x + 8 \{=0\} \Longrightarrow x^{2} - 3x - 4 \{=0\} \Longrightarrow (x+1)(x-4) = 0 \Longrightarrow x, -1, x \dots A \text{ scores B1ftM1A1}$$

$$-2x^{2}+6x+8 = 0 \Rightarrow (2x+2)(x-4) \Rightarrow x < -1, x > 4$$
 scores B0ftM1A1

 $-2x^2 + 6x + 8 < 0 \Rightarrow x^2 - 3x - 4 < 0 \Rightarrow (x+1)(x-4) < 0 \Rightarrow x < -1, x > 4$ scores B1ftM1A1 (as this has correct factorisation shown, the region follows from a < 0 (M1) and we condone reference to $x^2 - 3x - 4 < 0$ as part of their working to find critical values (A1).)

Acceptable notation: allow a ",", "or", "and" or " \cup " to link the two regions, which may also be in set notation. e.g. x < -1 or x > 4; $x_{,,-1}$, $x \dots 4$; x < -1 and x > 4 $x_{,,-1} \cup x \dots 4$; $\{x : x < -1 \cup x > 4\}$; $\{x \in \square : x_{,,-1}\} \cup \{x \in \square : x \dots 4\}$; $x \in (-\infty, -1) \cup (4, \infty)$; $(-\infty, -1] \cup [4, \infty)$ etc.

Do not accept 4 < x < -1 or use of the \cap symbol e.g. $(-\infty, -1] \cap [4, \infty)$ for the final mark, but they may be condoned for the M1. Note also that $[-\infty, -1] \cup [4, \infty]$ scores A0.

Quest	ion Scheme	Marks	AOs			
6(a) $x = 2$ or $y = 5$	B1	1.1b			
	<i>P</i> (2, 5)	B1	2.2a			
		(2)				
(b)	$16 - 4x = 3(x - 2) + 5 \Longrightarrow x = \dots$	M1	1.1b			
	$x = \frac{17}{7}$	A1	2.1			
		(2)				
(C)	$k_{\text{max}} = 3 \text{ or } k_{\text{min}} = \frac{"5"-4}{"2"}$	M1	3.1a			
	$\frac{1}{2} < k < 3$	A1	2.5			
		(2)				
	NT 4 -		(6 marks)			
(2)	Notes					
B1: (b) M1: A1:	Deduces (2, 5) Accept written separately e.g. $x = 2$, $y = 5$ isw after a correct answer. Condone 2, 5 without the brackets. Attempts to solve the correct equation without modulus signs $16-4x = 3(x-2)+5 \Rightarrow x =$ Must reach a value for x. Ignore attempts at e.g. $16-4x = 3(2-x)+5$ $x = \frac{17}{7}$ o.e. exact answer and no other values. If other values have been found they must be rejected or the $x = \frac{17}{7}$ clearly selected. Answer only implies both marks. Note: $x = "2.75"$ coming from $5 = 16 - 4x$ may be found as part of their working to establish which branch of the modulus graph the line $y = 16 - 4x$ intersects. If this is the case it need					
	Those that achieve $ x = \frac{17}{7}$ can score BOD M1A0.					
Alterr	native by squaring:					
	$16 - 4x = 3 x - 2 + 5 \Longrightarrow 11 - 4x = 3 x - 2 $					
	$\Rightarrow 16x^2 - 88x + 121 = 9\left(x^2 - 4x + 4\right)$					
	$\Rightarrow 7x^2 - 52x + 85 = 0 \Rightarrow x = 5, \frac{17}{7}$					
M1: A1:	Isolates the $ x-2 $ (or $3 x-2 $), squares both sides and solves the result usual rules and may be by calculator, leading to a value for <i>x</i> . Selects the $\frac{17}{7}$ or rejects any other values as in main scheme.	ting 3TQ us	ing the			

(c) M1: Correct method to find either critical value (following through on their P). Either k {=} 3 or k {=} $\frac{5^{-4}}{2^{-2}}$ scores M1 without evidence of an incorrect method. Note that k = 3 occasionally appears from use of the discriminant on x(k-3)+5=0, and scores M0 unless there is an alternative valid reason given. Allow the use of e.g. m = in place of k = here but do not allow x = or y =Correct range in terms of k in acceptable notation with no incorrect method seen. A1: Use of e.g. x is A0. Allow "and" or " \cap " to join the regions but not "or" or "," or " \cup " Accept e.g. (0.5,3); $k \in \left(\frac{1}{2},3\right)$; k < 3 and $k > \frac{1}{2}$; $k > \frac{1}{2} \cap k < 3$ but not $\frac{1}{2} < x < 3$; $\frac{1}{2}$, k, 3; $\left\lceil \frac{1}{2}, 3 \right\rceil$; $k > \frac{1}{2} \cup k < 3$; $k > \frac{1}{2}, k < 3$; $k > \frac{1}{2}$ or k < 3Alt 1 via solving simultaneous equations: e.g. $kx + 4 = 3(x-2) + 5 \Longrightarrow kx + 4 = 3x - 1 \Longrightarrow x = -\frac{5}{k-2}$ $kx + 4 = 3(2 - x) + 5 \Longrightarrow kx + 4 = 11 - 3x \Longrightarrow (k + 3)x = 7$ $\Rightarrow (k+3)\left(\frac{-5}{k-3}\right) = 7 \Rightarrow k = \frac{1}{2}$ Sets kx+4=3(x-2)+5 and kx+4=3(2-x)+5, eliminates x, and solves for k **M1**: A1: As main scheme. Alt 2 via squaring and the discriminant: $kx+4=3|x-2|+5 \Rightarrow kx-1=3|x-2|$ $\Rightarrow k^2 x^2 - 2kx + 1 = 9(x^2 - 4x + 4)$ $\Rightarrow \left(k^2 - 9\right)x^2 + \left(36 - 2k\right)x - 35 = 0$ $\Rightarrow (36-2k)^2 - 4(k^2-9)(-35) = 0$ \Rightarrow 144 k^2 - 144k + 36 = 0 \Rightarrow $k = \frac{1}{2}$ Sets kx+4=3|x-2|+5, isolates |x-2| (or 3|x-2|), squares both sides, uses $b^2-4ac...0$ **M1:** where ... is any equality or inequality, and solves the resulting 3TQ using the usual rules and may be by calculator, leading to a value for k. Condone slips in expanding the brackets. A1: As main scheme. Alt 3 via Domain for the right hand branch of the modulus graph: $kx + 4 = 3x - 1 \Rightarrow x = \frac{-5}{k - 3} > 2$ {or $x = \frac{5}{3 - k} > 2$ } $\Rightarrow k-3 < 0 \text{ and } \Rightarrow -5 < 2(k-3)$ $\Rightarrow k < 3 \text{ {and }} \Rightarrow 0.5 < k \text{ }$ M1: Sets kx + 4 = 3(x-2) + 5, makes x the subject, sets > 2 and deduces a critical value. A1: As main scheme.

Questi	on Scheme	Marks	AOs			
7(a)	${H =} 0.6e^{-0.2t} {+c}$	M1	1.1b			
	$t = 0, H = 1.5 \Longrightarrow 1.5 = "0.6" + c$ $\Longrightarrow c = 0.9$	dM1	3.4			
	$\Rightarrow H = 0.6e^{-0.2t} + 0.9$	A1	2.1			
		(3)				
(b)	$1.2 = 0.6e^{-0.2t} + 0.9 \Longrightarrow 0.6e^{-0.2t} = 0.3$	M1	3.4			
	$e^{-0.2t} = \frac{1}{2}$ $\Rightarrow t = -5\ln\left(\frac{1}{2}\right)$	dM1	1.1b			
	${t =} 3$ hours 28 minutes	A1	3.2a			
		(3)				
(c)	$\{As \ t \ gets \ large \ H \rightarrow \} \ 0.9$	M1	3.1b			
	0.9 m or 90 cm	A1ft (2)	2.2b			
		(2)	(9 montra)			
	N-4		(o marks)			
(0)	Notes					
dM1:	Note that we will condone $k = (-0.2)(-0.12) \{= 0.024\}$ If they divide by -0.12 first before integrating they need $aH = be^{-0.2t} \{$ numerical and $b \neq 1$. Condone a spurious integral symbol remaining a Uses $t = 0, H = 1.5$ and a model of the form $H = k e^{-0.2t} + c$ (or $aH = b$ value of the constant <i>c</i> . They cannot just "make up" a value for <i>k</i> . Do not be concerned with their processing to find <i>c</i> but they cannot just For reference if they divide by -0.12 first they should reach $-\frac{25}{3}H =$	+c} with a for integrat $e^{-0.2t} + c$ to st state B (o $-5e^{-0.2t} - 7.5$	and <i>b</i> ion. find the r <i>c</i>) is 0. 5 o.e.			
A1:	Correct complete equation in the required form: $H = 0.6e^{-0.2t} + 0.9$ wi	th the $H = r$	present.			
	May be awarded if seen at the start of (b) but not in (c). Condone $-\frac{1}{5}$ in place of -0.2 Finding correct values for A and <i>R</i> is insufficient for this mark					
	Allow exact equivalents but they must be in the required form, e.g. $H = \frac{6}{10}e^{-0.2t} + \frac{9}{10}$					
	A minimally acceptable answer is $\{H = \} 0.6e^{-0.2t} + c \rightarrow H = 0.6e^{-0.2t} + c$	-0.9 score N	/11dM1A1.			
	Note: sight of differentiating the given form to e.g. $\frac{dH}{dt} = -0.2Ae^{-0.2t}$ in their working					
	without clear evidence of integration of the original differential equations using the special case below.	on should b	e marked			
SC:	For candidates starting with the given answer $H = Ae^{-0.2t} + B$ it is positive $\frac{dH}{dt} = -0.2Ae^{-0.2t} = -0.12e^{-0.2t}$ to deduce that $A = 0.6$. This can be awarded. If they go on to find <i>B</i> as in the main scheme then this can be awarded. Answer with no working scores 110.	ssible to use arded SC M l SC M1dM	11dM0A0 1A0			

Note: If the special case is applied they may go on to achieve the rest of the marks in (b) and (c).

- (b) Note: *A* and *B* must be numbers but may be "made up" if they did not have an answer to (a).
- M1: Uses H = 1.2 in a model of the form $H = Ae^{-0.2t} + B$, $B \neq 0$ and rearranges to make $Ae^{\pm 0.2t}$ or $e^{\pm 0.2t}$ the subject. Condone slips in rearranging, e.g. dividing the LHS by 0.9 instead of subtracting 0.9. Rearranging first before substituting is acceptable but they must get to $Ae^{\pm 0.2t}$ or $e^{\pm 0.2t}$ as the subject.
- **dM1:** Correct use of ln to make *t* the subject. Requires A > 0, 0 < B < 1.2 and $e^{\pm 0.2t} = \lambda > 0$ If they had a negative value for *A* in part (a) they cannot just make it positive at this stage. Any of $5 \ln 2$ or $-5 \ln \frac{1}{2}$ or awrt 3.46 or awrt 3.47 following a correct equation will imply M1dM1.

If they do not show their method for an incorrect $H = Ae^{-0.2t} + B$ with A > 0, 0 < B < 1.2 you may need to check their value for t > 0 as it may imply M1dM1.

- A1: Correct time in hours and minutes $\{t =\}$ 3 hours 28 minutes, but condone e.g. 3h 28m Must come from correct values of *A* and *B* in (a).
- Note: If their B = 0 then they should end up with t = -3.46... however, they did not score the first M1. They cannot "recover" this by making it positive and finding t = 3 hours 28 minutes.
- (c) Note that 0.9 or 0.9m must come from a correct value of *B* in (a) to score any marks.
- M1: Identifies the requirement to establish the limit as *t* tends to infinity.

It can be implied by stating that $H = Ae^{-0.2t} + B \rightarrow B$ or $\left(\lim_{t \rightarrow \infty} \left[0.6e^{-0.2t} + 0.9 \right] \right) = 0.9$

Stating "*B*" on its own will score this mark. Substituting a large value is M0 unless it leads to their value for *B* at which point the A1 is available as well.

A1ft: Correct height including units. Follow through on their value of *B* where 0 < B < 1.2Correct ft height including units implies M1A1, while e.g. 0.9 (no units) would imply M1A0. Evidence of an incorrect method such as $1.5 - 0.6e^{-0.2(0)} = 0.9$ m scores M0A0.

Misreading as $\frac{dH}{dt} = -0.12e^{0.2t}$ can score a maximum (a) 110 (b) 100 (c) 10.

Ques	tion	Scheme	Marks	AOs		
8(a	a)	$fg(2) = 4 - 3\left(\frac{5}{2(2) - 9}\right)^2 = \dots$	M1	1.1b		
		fg(2) = 1	A1	1.1b		
			(2)			
(b)	$y = \frac{5}{2x - 9} \Longrightarrow 2xy - 9y = 5 \Longrightarrow 2xy = 5 + 9y$	M1	1.1b		
		$2xy = 5 + 9y \Longrightarrow x = \frac{5 + 9y}{2y}$	A1	2.1		
		$g^{-1}(x) = \frac{5+9x}{2x} \\ x \neq 0 \\ \{x \in \mathbb{R}\}$	A1	2.5		
	(i)	5	(3)			
(0)	(1)	$\{gf(x)=\} \frac{5}{2(4-3x^2)-9}$	M1	1.1b		
		$=\frac{5}{-1-6x^2} \text{ or } \frac{-5}{1+6x^2}$	A1	1.1b		
(ii	i)	$-5 \leq \mathrm{gf}(x) < 0$	B1	2.2a		
			(3)			
(d	l)	$f(x) = h(x) \Longrightarrow 4 - 3x^2 = 2x^2 - 6x + k$	M1	1.1b		
		$\Rightarrow 5x^2 - 6x + k - 4 = 0$				
		$b^2 - 4ac < 0 \Longrightarrow 36 - 4(5)(k-4) < 0 \Longrightarrow k > \dots$	dM1	3.1a		
		<i>k</i> > 5.8 o.e.	A1 (2)	2.2a		
			(3)	l marks)		
		Notes	(22			
(a) M1:	Corr a val	ect method, e.g. attempts to find $g(2)\left(=\frac{5}{4-9}\right)$ and substitutes its value.	lue into f to a	achieve		
	Alter	rnatively, attempts $fg(x) = 4 - 3\left(\frac{5}{2x-9}\right)^2$, condoning slips, and subst	titutes $x = 2$	to		
A1:	achie Corr com	achieve a value. Correct answer only. If $gf(2)$ is also attempted, then mark the final attempt which is the most complete.				
(b) M1:	Elim Alter one	Eliminates the fraction and puts the <i>xy</i> term (or <i>x</i> term) onto one side of the equation. Alternatively swaps <i>x</i> 's and <i>y</i> 's, eliminates the fraction and puts the <i>xy</i> term (or <i>y</i> term) onto one side of the equation. Condone minor slips in rearranging e.g. $-9y$ instead of $+9y$				
A1:	Corr	Correct expression for the inverse, x in terms of y or y in terms of x. Need not be simplified. Note that $y = \frac{5}{2x-9} \Rightarrow 2x-9 = \frac{5}{y} \Rightarrow 2x = \frac{5}{y} + 9$ is M1 and $\Rightarrow x = \frac{\frac{5}{y} + 9}{2}$ is A1				

A1:	Fully correct notation for the inverse including its domain and including the e.g. $g^{-1} = .$
	Condone $x \neq 0$ without $x \in \mathbb{R}$ Need not be simplified.
	Do not be too worried about g^{-1} looking a bit like y^{-1} due to poor handwriting but if it is clearly
	y^{-1} then withhold this mark.
	5
	-1 () $5+9x$ -1 () $5-9$ -1 () $7-9$
	Accept e.g. $g^{-1}(x) = \frac{1}{2x} x \in \mathbb{R}, x \neq 0 \text{ or } g^{-1}(x) = \frac{1}{2x} + \frac{1}{2} x \neq 0 \text{ or } g^{-1} = \frac{1}{2} x \neq 0$
	Ignore any reference to the range of g.
<pre>/ ````````````````````````````````````</pre>	
(c)(1)	
MI:	Correct method. Attempts to substitute f into g, condoning slips, e.g. missing the 3.
Al:	Correct simplified fraction. Ignore any reference to domains. Do not isw.
	There is no need to include the $gf(x) =$
/••	If $fg(x)$ is also attempted, then mark the final attempt which is the most complete.
(11)	
B1:	Deduces the correct range. May be scored even if $gf(x)$ is incorrect (but not a follow through).
	Allow e.g. $-5 \le y < 0, y \in [-5,0), [-5,0)$
	Do not allow e.g. $-5 \le x < 0$, $y \in (-5,0)$, $-5 \le f(x) < 0$, $-5 \le g(x) < 0$
(d)	
M1:	Sets $f(x) = h(x)$ and attempts to collect terms to obtain a $3TO = 0$
	The = 0 may be implied by use of the discriminant. Condone copying slips in $f(x)$ and $h(x)$.
dM1:	Recognises the need to use " $b^2 - 4ac \dots 0$ " on their 3TQ and uses this to establish a value or
	range of values for k. Allow for an attempt to solve $b^2 - 4ac = 0$ or $b^2 = 4ac$, which must be
	in terms of k only where is an equality or any inequality
	in terms of a only, where is an equancy of any inequality.

(Alt 1) Attempts to complete the square for their 3TQ (usual rules) and uses its minimum value set ... 0 to establish a value or range of values for k. Their expression for the minimum value must be in terms of k only. Condone any equality or inequality when comparing their minimum value to 0.

e.g.
$$5x^2 - 6x + k - 4 \rightarrow 5\left(x - \frac{3}{5}\right)^2 - \frac{29}{5} + k \rightarrow "-\frac{29}{5} + k" > 0 \Longrightarrow k > ... \text{ scores dM1}$$

(Alt 2) Differentiates their 3TQ with respect to x to achieve a linear expression, sets = 0 (which may be implied), solves for x and substitutes x back into their 3TQ set ... 0 to establish a value or range of values for k. Here ... can be any equality or inequality. e.g. $5x^2 - 6x + k - 4 \rightarrow 10x - 6 \rightarrow x = 0.6 \Rightarrow 5(0.6)^2 - 6(0.6) + k - 4 > 0 \Rightarrow k > ...$ scores dM1

Deduces the correct range for k, e.g. $k > \frac{29}{5}$ o.e. Must be in terms of k and not e.g. x A1:

Accept e.g.
$$k \in (5.8,\infty)$$
 or just $\left(\frac{29}{5},\infty\right)$ but **not** e.g. $k \dots \frac{29}{5}$ or $x > \frac{29}{5}$ or $[5.8,\infty)$

Question	Scheme	Marks	AOs			
9(a)	$\frac{9^{7-2k}}{3^{4k-5}} = \frac{3^{2(k-1)}}{9^{7-2k}} \Longrightarrow \frac{3^{2(7-2k)}}{3^{4k-5}} = \frac{3^{2(k-1)}}{3^{2(7-2k)}}$	M1	3.1a			
	$ (3^{2(7-2k)})^2 = 3^{4k-5} \times 3^{2(k-1)} $ $ \Rightarrow 28 - 8k = 6k - 7 \Rightarrow k = \dots $ $ 3^{2(7-2k)-(4k-5)} = 3^{2(k-1)-2(7-2k)} $ $ \Rightarrow 19 - 8k = 6k - 16 \Rightarrow k = \dots $	dM1	1.1b			
	$k = \frac{5}{2}*$	A1*	2.1			
		(3)				
(b)	$a = 3^{4(2.5)-5}$ and $r = \frac{9^{7-2(2.5)}}{3^{4(2.5)-5}} \Longrightarrow$ one of $a = 243$ or $r = \frac{1}{3}$	M1	2.2a			
	$S_{\infty} = \frac{a}{1-r} = \frac{"243"}{1-"\frac{1}{3}"}$	M1	1.1b			
	$S_{\infty} = \frac{729}{2} (364.5)$ cao	A1	1.1b			
		(3)				
		(6 marks)			
	Notes					
(a) Sp	ecial cases:	_				
SC 1: Fo	r those that verify rather than prove a SC 100 is awarded for substitutin	ng $k = \frac{5}{2}$ into	o all			
thr	ee terms to correctly obtain 243, 81 and 27 with a statement that this is	s <u>geometric</u>	with			
r =	$=\frac{1}{2}$ (or equivalent reason). All statements must be correct.					
SC 2: Be	aware that e.g. $\frac{9^{7-2k}}{3^{4k-5}} = \frac{3^{2(k-1)}}{9^{7-2k}} \Longrightarrow 81^{2(7-2k)} = 9^{6k-7}$ is an incorrect proc	ess (without	;			
SOI	some indication that they have intentionally squared both sides) that fortuitously leads to the correct answer and may score maximum SC 010.					
 M1: Uses the 3 terms to set up an equation in k and either reaches a common base by replacing 9 with 3² or by replacing 3 with 9^{0.5} and uses the power law of indices correctly or uses the laws of indices correctly to reach 9^{14-4k} = 3^{6k-7} condoning slips in e.g. expanding brackets. Writing down e.g. 2(7-2k)-(4k-5) = 2(k-1)-2(7-2k) is sufficient to imply the M1. dM1: Correct processing leading to a value for k. 						
A1*: Co	rrect value following correct working. Allow $k = 2.5$ in place of $k = \frac{5}{2}$	-				
Co	Condone missing/invisible brackets provided they are recovered correctly.					
Alt 1 Usin	g Base 9:					
Sc	All T Using base 9: $\frac{9^{7-2k}}{3^{4k-5}} = \frac{3^{2(k-1)}}{9^{7-2k}} \Rightarrow \frac{9^{7-2k}}{9^{2k-2.5}} = \frac{9^{k-1}}{9^{7-2k}} \text{ o.e. scores M1}$ $\Rightarrow 9^{9.5-4k} = 9^{3k-8} \Rightarrow 9.5 - 4k = 3k - 8 \Rightarrow 7k = 17.5 \Rightarrow k = 2.5$					

Alt 2 Finding *r* in terms of *k* and using e.g. $u_3 = ar^2$:

$$r = \frac{9^{7-2k}}{3^{4k-5}} = \frac{3^{2(7-2k)}}{3^{4k-5}} \left\{= 3^{19-8k}\right\} \text{ or } r = \frac{3^{2(k-1)}}{9^{7-2k}} = \frac{3^{2k-2}}{3^{2(7-2k)}} \left\{= 3^{6k-16}\right\}$$
$$\Rightarrow 3^{4k-5} \times \left(3^{19-8k}\right)^2 = 3^{2k-2} \text{ or } \Rightarrow 3^{4k-5} \times \left(3^{6k-16}\right)^2 = 3^{2k-2} \text{ scores } M1$$
$$\Rightarrow 3^{4k-5} \times 3^{2(19-8k)} = 3^{2k-2} \Rightarrow 33-12k = 2k-2 \Rightarrow 14k = 35 \Rightarrow k = 2.5$$

Score dM1 when a value of k is achieved using a correct process and A1* if fully correct.

Alt 3 Using Logs Way 1:

$$\frac{9^{7-2k}}{3^{4k-5}} = \frac{3^{2(k-1)}}{9^{7-2k}} \implies (9^{7-2k})^2 = 3^{6k-7} \implies 9^{14-4k} = 3^{6k-7} \text{ scores M1}$$
$$\implies (14-4k)\log_3 9 = 6k-7$$
$$\implies 2(14-4k) = 6k-7$$
$$\implies k = 2.5$$

Score dM1 when a value of k is achieved using a correct process and A1* if fully correct.

0/1 1

Alt 4 Using Logs Way 2:

$$\frac{9^{7-2k}}{3^{4k-5}} = \frac{3^{2(k-1)}}{9^{7-2k}}$$

$$\Rightarrow (7-2k)\log_3 9 - (4k-5)\log_3 3 = (2k-2)\log_3 3 - (7-2k)\log_3 9 \text{ scores M1}$$

$$\Rightarrow 2(7-2k) - (4k-5) = 2k - 2 - 2(7-2k)$$

$$\Rightarrow 19 - 8k = 6k - 16$$

$$\Rightarrow k = 2.5$$

Score dM1 when a value of k is achieved using a correct process and A1* if fully correct.

Alt 5 Recognising that taking log₃ forms an Arithmetic Sequence:

$$\{\log_3\}u_1 = 4k - 5, \ \{\log_3\}u_2 = 2(7 - 2k), \ \{\log_3\}u_3 = 2(k - 1) \\ \Rightarrow 2(7 - 2k) - (4k - 5) = 2(k - 1) - 2(7 - 2k) \text{ scores M1} \\ \Rightarrow 19 - 8k = 6k - 16 \\ \Rightarrow k = 2.5$$

Score dM1 when a value of k is achieved using a correct process and A1* if fully correct. There is no need to see any mention of log in this approach.

(b)

M1: Deduces expressions for the first term and the common ratio using $k = \frac{5}{2}$ in the <u>correct</u>

formulae and finds at least one of
$$a = 243$$
 or $r = \frac{1}{3}$. Allow if seen in (a). May be implied by

correct values for *a* and *r*. For reference,
$$a = 3^{4(2.5)-5}$$
 and $r = \frac{9^{7-2(2.5)}}{3^{4(2.5)-5}} \left\{ \text{or } r = \frac{3^{2(2.5-1)}}{9^{7-2(2.5)}} \right\}$

M1: Recalls the sum to infinity formula and substitutes their values for *a* and *r* provided |r| < 1Dependent on a correct attempt to find both *a* and *r* using k = 2.5 but allow if neither value is correct or if they are unprocessed e.g. $\frac{3^{4(2.5)-5}}{1-\frac{9^{7-2(2.5)}}{3^{4(2.5)-5}}}$ scores this mark.

A1: cao. Correct sum to infinity. Answer only (with no working) scores full marks. Apply isw.

Ques	stion	Scheme	Marks	AOs		
10	(a)	$8(4) - 4^{\frac{5}{2}} = 32 - 32 = 0$	B1	1.1b		
			(1)			
(b)	$8 - \frac{5}{2}x^{\frac{3}{2}}$	B1	1.1b		
		$x = 4 \Longrightarrow \left\{ \frac{dy}{dx} = \right\} 8 - \frac{5}{2} \times 8 = -12$ $\implies y \{-0\} = "-12"(x-4)$	M1	1.1b		
		12x + y = 48 *	A1*	1.1b		
			(3)			
(0	c)	Attempts to find one of the coordinates of the point of intersection $y = 8x$, $12x + y = 48 \Rightarrow y = 19.2$ (or $x = 2.4$)	M1	1.1b		
		Triangle area is $\frac{1}{2} \times 4 \times "19.2" \left(= 38.4 \text{ or } \frac{192}{5} \right)$ or $\int_{0}^{"2.4"} 8x dx + \int_{"2.4"}^{4} "(48 - 12x)" dx$	dM1	3.1a		
		$\int \left(8x - x^{\frac{5}{2}}\right) dx = 4x^2 - \frac{2}{7}x^{\frac{7}{2}}$	B1	1.1b		
		$A = 38.4 - \left[\left[\left[4x^2 - \frac{2}{7}x^{\frac{7}{2}} \right]_0^4 \right] = 38.4 - 64 + \frac{256}{7} $	ddM1	3.1a		
		$=\frac{384}{35}$	A1	1.1b		
			(5)			
			(!	9 marks)		
		Notes				
(a) B1:	Substi	tutes $x = 4$ into the equation of the curve and verifies that $y = 0$. Acce	ept "8(4)-4	$4^{\frac{5}{2}} = 0$ "		
	Altern	atively, sets $8x - x^{\frac{5}{2}} = 0$ and solves with correct processing to achiev	x = 4.			
	Asar	pinimum accept e g $8r - r^{\frac{5}{2}} = 0 \implies r^{\frac{3}{2}} - 8 \implies \{r - \}$ 4 which may	follow facto	risation		
(b)	<i>п</i> э а 1	$\lim_{n \to \infty} \lim_{n \to \infty} \lim_{n$		115001011.		
B1:	Correc	ct differentiation. The $\frac{dy}{dt}$ = need not be present.				
M1:	dx Correct method for finding the equation of the tangent at $A(4, 0)$.					
	Requi	res substitution of $x = 4$ into their $\frac{dy}{dx}$ and an attempt at the equation	of the line u	sing this		
	gradient. If using $y - y_1 = m(x - x_1)$ then condone the omission of the -0.					
	If $y =$	mx + c is used they must proceed as far as $c =$				
	Accep	t $\frac{dy}{dx} = -12$ or $m = -12$ without explicit substitution of $x = 4$ provide	d $8 - \frac{5}{2}x^{\frac{3}{2}}$ i	s seen.		

- A1*: Correct work leading to the given equation having scored B1M1. Condone y+12x = 48 and apply isw once seen. Do not condone 12x + y - 48 = 0 (unless a correct equation = 48 is seen).
- (c) Note: Condone poor notation such as missing dx or spurious \int symbols throughout.
- M1: Attempts to find either the x or y coordinate of the intersection of line l_1 and line l_2 You may need to check the diagram or limits to their integrals.

dM1: Correct method for the area of the triangle. e.g. Triangle area is $\frac{1}{2} \times 4 \times "19.2" \left(= 38.4 \text{ or } \frac{192}{5}\right)$

If integration is attempted then condone slips in their rearrangement of 12x + y = 48 to y = 48 - 12x and note that their integrals do need not to be evaluated, so for example

look for
$$\int_{0}^{2.4^{\circ}} 8x \, dx + \int_{2.4^{\circ}}^{4^{\circ}} (48 - 12x)'' \, dx \qquad \left\{ = \frac{576}{25} + \frac{384}{25} = 23.04 + 15.36 \right\}$$

B1: Correct integration of **curve** ignoring limits, i.e.
$$4x^2 - \frac{2}{7}x^{\frac{7}{2}}$$
 but condone e.g. $\frac{8x^{1+1}}{2} - \frac{x^{\frac{5}{2}+1}}{\frac{7}{2}}$

ddM1: Fully correct strategy including substitution which would lead to an **exact** area. Does not need to reach a value. Dependent on both previous M marks.

Implied by
$$38.4 - \frac{192}{7}$$
 or a correct final answer $\frac{384}{35}$

Note that the decimal approximation that might be seen is 10.97142857 and implies ddM0 unless there is evidence of substitution (which need not be evaluated).

A1: Correct exact value. Either $\frac{384}{35}$ or $10\frac{34}{35}$

Alternative using lines – curve:

- M1: Attempts to find either the x or y coordinate of the intersection of line l_1 and line l_2 You may need to check the diagram or limits to their integrals.
- **dM1:** Correct method for at least one part (0 to "2.4" or "2.4" to 4) of the area of *R* including limits. Condone slips in their rearrangement of 12x + y = 48 to y = 48 - 12x and note that their integrals do need not to be evaluated, so for example

look for
$$\int_{0}^{\sqrt{2.4^{"}}} 8x - \left(8x - x^{\frac{5}{2}}\right) dx$$
 or $\int_{\sqrt{2.4^{"}}}^{4} \left(48 - 12x\right) - \left(8x - x^{\frac{5}{2}}\right) dx$ (or a sum of both)

B1: Correct integration of **both** regions ignoring limits. May be completed as a sum or separately. $\frac{5}{+1}$

Condone e.g. $\frac{x^{\frac{5}{2}+1}}{\frac{7}{2}}$ in place of $\frac{2}{7}x^{\frac{7}{2}}$ Note that each integral may have been simplified.

$$\int_{-\infty}^{\infty} x^{\frac{5}{2}} dx \text{ and } \{+\} \int_{-\infty}^{\infty} 48 - 20x + x^{\frac{5}{2}} dx \rightarrow \left[\frac{2}{7}x^{\frac{7}{2}}\right]_{-\infty}^{\infty} \text{ and } \{+\} \left[48x - 10x^{2} + \frac{2}{7}x^{\frac{7}{2}}\right]_{-\infty}^{\infty}$$

ddM1: Fully correct strategy including substitution which would lead to an exact area.

Does not need to reach a value. Dependent on both previous M marks.

This approach requires:

- substitution of 0, their 2.4 and 4 in the correct places
- the $\frac{2}{7}(2.4)^{\frac{7}{2}} \frac{2}{7}(2.4)^{\frac{7}{2}}$ to be cancelled (may be implied by a correct final answer $\frac{384}{35}$)

Note that the decimal approximation that might be seen is 10.97142857 and implies ddM0 unless there is evidence that the $\frac{2}{7}(2.4)^{\frac{7}{2}} - \frac{2}{7}(2.4)^{\frac{7}{2}}$ has been cancelled e.g. 6.118... - 6.118...

A1: Correct exact value. Either $\frac{384}{35}$ or $10\frac{34}{35}$

Ques	tion	Scheme	Marks	AOs
11	l	Identifies angle $BAO = \frac{\pi}{3}$ or angle $BOC = \frac{2\pi}{3}$	B1	2.2a
		Area(segment) = $\frac{1}{2} \times 5^2 \times \frac{\pi}{3} - \frac{1}{2} \times 5^2 \sin \frac{\pi}{3} \left\{ = \frac{25\pi}{6} - \frac{25\sqrt{3}}{4} \right\}$		
		or	M1	2.1
		Area(AOB) = $2 \times \frac{1}{2} \times 5^2 \times \frac{\pi}{3} - \frac{1}{2} \times 5^2 \sin \frac{\pi}{3} \left\{ = \frac{25\pi}{3} - \frac{25\sqrt{3}}{4} \right\}$		
		Area of $R = \frac{1}{2} \times 5^2 \times \frac{2\pi}{3} - \left(\frac{1}{2} \times 5^2 \times \frac{\pi}{3} - \frac{1}{2} \times 5^2 \sin \frac{\pi}{3}\right)$		
		or	dM1	3.1a
		Area of $R = \frac{1}{2} \times \pi \times 5^2 - \left(\frac{1}{2} \times 5^2 \times \frac{\pi}{3} - \frac{1}{2} \times 5^2 \sin \frac{\pi}{3} + \frac{1}{2} \times 5^2 \times \frac{\pi}{3}\right)$		
		$=\frac{25}{4}\sqrt{3}+\frac{25}{6}\pi(\rm{cm}^{2})$	A1	1.1b
			(4)	
			(4	4 marks)
		Notes		
Note:	Use of	f degrees, if used in formulae in degrees, can score full marks.		_
B1:	Deduc	ces angle BAO or angle BOA is $\frac{\pi}{2}$ radians or 60° or deduces that an	gle BOC is	$\frac{2\pi}{2}$
	radian	s or 120°. May be seen on the diagram or their own sketches or em	bedded in a	formula.
	May t	be implied if they find e.g. $\frac{1}{6} \times \pi \times 5^2$ for the area of the minor sector	ſ.	
M1:	Uses a	a correct process and an angle of $\frac{\pi}{3}$ radians or 60° to find		
	theoror	e area of the segment bounded by the arc <i>OB</i> and straight line <i>OB</i> the area of the segment bounded by the arc <i>AB</i> and straight line <i>AB</i> the area of unshaded region <i>AOB</i> .		
	Allow	decimal values to imply the method (require 3sf rounded or trunca f 60° must be in a correct formula in degrees $0.5 \times 5^2 \times 60$ scores M	ted).	

For reference these are the areas of the regions:

• segment
$$=\frac{1}{2} \times 5^2 \times \frac{\pi}{3} - \frac{1}{2} \times 5^2 \times \sin \frac{\pi}{3} \left\{ = \frac{25\pi}{6} - \frac{25\sqrt{3}}{4} = 2.26 \right\}$$
 (3 s.f.) scores M1

•
$$AOB = \frac{1}{2} \times 5^2 \times \frac{\pi}{3} + \frac{1}{2} \times 5^2 \times \frac{\pi}{3} - \frac{1}{2} \times 5^2 \times \sin \frac{\pi}{3} \left\{ = \frac{25\pi}{3} - \frac{25\sqrt{3}}{4} = 15.35 \right\}$$
 (2 d.p.) scores M1

• Minor sector
$$=\frac{1}{2} \times 5^2 \times \frac{\pi}{3} \left\{ = \frac{25\pi}{6} = 13.09 \right\}$$
 (2 d.p.) scores M0 on its own

• Major sector
$$=\frac{1}{2} \times 5^2 \times \frac{2\pi}{3} \left\{ = \frac{25\pi}{3} = 26.18 \right\}$$
 (2 d.p.) scores M0 on its own

Triangle $AOB = \frac{1}{2} \times 5^2 \times \sin \frac{\pi}{3} \left\{ = \frac{25\sqrt{3}}{4} = 10.8 \right\}$ (3 s.f.) scores M0 on its own. This mark may be implied if seen as part of a **correct** strategy for the area of *R*. Note that the area of triangle AOB may also be found using Pythagoras and $\frac{1}{2}bh$ but their method must be correct. **dM1:** A fully correct strategy for finding the area of *R*. Follow through on incorrectly simplified areas but the method must be correct. Allow decimal values to imply the method (require 3sf rounded or truncated). For reference, the area is approximately 23.92 (2d.p.) and is likely to imply B1M1dM1 but their work should be checked. Either: major sector – segment = $\frac{1}{2} \times 5^2 \times \frac{2\pi}{3} - \left(\frac{1}{2} \times 5^2 \times \frac{\pi}{3} - \frac{1}{2} \times 5^2 \sin \frac{\pi}{3}\right)$ or semicircle $-AOB = \frac{1}{2} \times \pi \times 5^2 - \left(\frac{1}{2} \times 5^2 \times \frac{\pi}{3} - \frac{1}{2} \times 5^2 \sin \frac{\pi}{3} + \frac{1}{2} \times 5^2 \times \frac{\pi}{3}\right)$ or semicircle $-2 \times \text{sector } AOB + \text{triangle } AOB = \frac{1}{2} \times \pi \times 5^2 - 2 \times \frac{1}{2} \times 5^2 \times \frac{\pi}{3} + \frac{1}{2} \times 5^2 \sin \frac{\pi}{3}$ or sector AOB + triangle AOB = $\frac{1}{2} \times 5^2 \times \frac{\pi}{3} + \frac{1}{2} \times 5^2 \sin \frac{\pi}{3}$ (this also implies the first M1) • If they go straight to one of these expressions then we would imply the first M1 (and the B1). Correct expression $\frac{25}{4}\sqrt{3} + \frac{25}{6}\pi$ o.e. in the correct form e.g. $\frac{50}{8}\sqrt{3} + \frac{75}{18}\pi$ A1: Ignore any reference to (or absence of) units. Do not apply isw if they go on to add or subtract additional areas.

However, we can condone poor simplification e.g. $\frac{25}{12}(\sqrt{3}+\pi)$ following a correct answer.

Note: Attempts via integration for the area underneath a circle or polar coordinates are unlikely but if seen then use Review. The schemes for these approaches follow the main scheme but the first M1 may also be scored for finding half of the area of *AOB*.

You might find the following diagram helpful:

Ques	stion	Scheme	Marks	AOs
12	(a)	K = 500	B1	1.1b
		$\tan \alpha = \frac{480}{140} \Longrightarrow \alpha = \dots$	M1	1.1b
		$\alpha = $ awrt 73.74° or 500 cos $(\theta + 73.74)$ °	A1	1.1b
			(3)	
(b)	(i)	$R = 1000 + 500\cos(30t + 73.74)^{\circ}$		
		or $R = 1000 + 140\cos(30t)^\circ - 480\sin(30t)^\circ$	B1ft	3.3
(b)	(ii)	$\{R_{\min}=\}500$	B1ft	3.4
			(2)	
(0	2)	$t = 3.5 \Rightarrow R = "1000" + "500" \cos(30(3.5) + "73.74")^{\circ} =$	M1	3.4
		R = awrt 500.1 so the model is reliable	A1	3.5a
()	•		(2)	
(0	1)	$\sin(30t+70)^\circ = -1 \Longrightarrow 30t + 70 = 270 \Longrightarrow 30t = \dots \text{ (or } t = \dots)$	M1	3.4
		$30t = 200\left(\text{or } t = \frac{20}{3}\right)$	A1	1.1b
		$R = "1000" + "500" \cos\left(30\left("\frac{20}{3}"\right) + "73.74"\right)^{\circ}$ or $R = "1000" + 140 \cos("200")^{\circ} - 480 \sin("200")^{\circ}$	dM1	3.4
		R = 1032 (or 1033)	A1	1.1b
			(4)	
		Notos	(11 marks)
Note: (a) B1: M1:	Note: Candidates working in radians are able to score all the M and B marks in this question. Condone the absence of the degrees symbol throughout the whole question. (a) B1: Correct value for K. Condone $R = 500$ M1: Award for $\tan \alpha = \pm \frac{480}{140} \Rightarrow \alpha =, \tan \alpha = \pm \frac{140}{480} \Rightarrow \alpha =, \sin \alpha = \pm \frac{480}{"500"} \Rightarrow \alpha = \text{ or}$			
	$\cos \alpha = \pm \frac{140}{"500"} \Longrightarrow \alpha = \dots$			
	Note $\alpha = awrt 1.3$ (rad) implies this mark.			
A1:	$\alpha = a \alpha$	wrt 73.74{°} or correct expression $500\cos(\theta + 73.74)$ {°}		
(b)(i) B1ft:	Note: mark parts (b)(i) and (b)(ii) together. Correct equation of the model in either form including the R = following through on their numerical K (0 < K , 750) and their numerical α .			
	Allow for e.g. $R = 1500 - "500" + "500" \cos(30t + "73.74") \{\circ\}$ or for			
	$R = 1500 - "500" + 140\cos(30t)^{\circ} - 480\sin(30t)^{\circ} \text{ but not e.g. } R = 1500 - K + K\cos(30t + \alpha)^{\circ}$			
	$R = 1000 + 140\cos 30t - 480\sin 30t$ (without the brackets) is correct. Allow this mark if they have truncated or rounded an otherwise correct α (to 3s.f.)			

(b)(ii)	
B1ft:	500 or follow through on (their A – their K) or $(1500 - 2 \times \text{their } K)$ provided it is non-negative and less than 1500. It must be clear this is their answer to (b)(ii) so expect to see e.g. (b) or $R_{\min} =$ or an indication it is the minimum.
(c)	Note: if θ is used in place of 30 <i>t</i> then they must revert back to 30 <i>t</i> correctly to access the
M1:	marks. Substitutes $t = 3.5$ into their model for the number of rabbits (you may need to check if no method is shown)
	or substitutes $t = 3.5$ into their $\cos(30t + \alpha)^{\circ}$
A1:	Condone substitution of a value of t in the range $3 \le t \le 4.5$ for this mark. R = awrt 500.1 or 500 (not awrt) following substitution of $t = 3.5$, suggesting that the model is valid/reliable/appropriate/good. or $\cos(30(3.5) + 73.74) \{\circ\} \approx -1$ suggesting that the model is valid/reliable/appropriate/good.
	Allow this mark if they have truncated or rounded an otherwise correct α (to 3s.f.)
Alt:	Minimum occurs when $A + K \cos(30t + a)^\circ = R \rightarrow \cos(30t + a)^\circ = 3$ with $ 3 = 1$
1011.	$ \text{Infinition occurs when } A + K \cos(30t + a) = K_{\min} \Rightarrow \cos(30t + a) = \lambda \text{ when } \lambda , 1 $
	May just see $\cos(30t+73.74)^\circ = -1 \Rightarrow t =$ (or their $\cos(30t+\alpha)^\circ = -1 \Rightarrow t =$)
	$30t + \alpha = 180 \Rightarrow t =$ implies this mark. Condone $30t + \alpha = \pi \Rightarrow t =$ for this mark.
Al:	t = 3.54 (i.e. the middle of April) so the model is valid/reliable/appropriate/good. Do not condone incorrect statements e.g. $t = 3.54$ i.e. the middle of March so close to
	middle of April. If using $A + K \cos(30t + \alpha)^\circ = R$, then R must be = their A - their K
	Allow this mark if they have truncated or rounded an otherwise correct α (to 3s.f.)
A 14 O -	
$\begin{array}{c c} Alt 2 \\ M1 \\ \end{array}$	Condone finding the minimum using $sin(30t+73.74)^\circ = 0 \implies t = s_0$ (or their
	$\sin(30t+\alpha)^\circ = 0 \Longrightarrow t = 0$
	$30t + \alpha = 180 \Rightarrow t =$ implies this mark. Condone $30t + \alpha = \pi \Rightarrow t =$ for this mark.
A1:	t = 3.54 (i.e. the middle of April) suggesting that the model is valid/reliable/appropriate. Do not condone incorrect statements, e.g., $t = 3.54$ i.e. the middle of March so close to middle of April.
	The complete derivative for $\frac{dR}{dt}$ does not need to be seen.
	Allow this mark if they have truncated or rounded an otherwise correct α (to 3s.f.)
(d)	Note: if θ is used in place of 30 <i>t</i> then they must revert back to 30 <i>t</i> correctly to access the marks.
M1:	Realises that $\sin(30t+70)^\circ = -1$, reaches $30t+70 = 270$ or -90 and attempts to find t (or $30t$)
	Condone attempts using differentiation. The minimum occurs when $\cos(30t+70)^\circ = 0 \Longrightarrow$
	$30t + 70 = 270 \Rightarrow 30t = \dots$ (or $t = \dots$). They must use 270 or -90 and not 90 to achieve the
	minimum. Condone $30t + \alpha = \frac{3\pi}{2} \Longrightarrow t =$ for this mark but not $30t + \alpha = \frac{\pi}{2} \Longrightarrow t =$
A1:	Correct value for $30t$ (or <i>t</i>) Accept rounded or truncated values to at least 3s.f. e.g. 6.66 or 6.67
dM1:	Substitutes their value of $t > 0$ (or $30t > 0$) coming from $30t + 70 = 270$ into their model for <i>R</i>
A1:	Correct number of rabbits. Allow 1032 or 1033 but must be whole numbers and not just 1030. Allow this mark if they have truncated or rounded an otherwise correct α (to 3s f.)

Que	stion	Scheme	Marks	AOs
13	(a)	$x = a\sin^2\theta \Longrightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = 2a\sin\theta\cos\theta$	B1	1.1b
		$\int x^{\frac{1}{2}} \sqrt{a - x} \mathrm{d}x = \int \sqrt{a} \sin \theta \sqrt{a - a \sin^2 \theta} \times 2a \sin \theta \cos \theta \left\{ \mathrm{d}\theta \right\}$	M1	2.1
		$= \int \sqrt{a} \sin \theta \sqrt{a} \cos \theta \times 2a \sin \theta \cos \theta \mathrm{d}\theta = 2a^2 \int \sin^2 \theta \cos^2 \theta \mathrm{d}\theta$	JM 1	2.1.
		$=2a^2\int \left(\frac{1}{2}\sin 2\theta\right)^2 \mathrm{d}\theta$	divi i	5.1a
		Replaces or considers limits $\{x = 0 \Rightarrow\} \theta = 0, \{x = a \Rightarrow\} \theta = \frac{\pi}{2}$	A 1*	1.16
		$=\frac{1}{2}a^2\int_0^{\frac{\pi}{2}}\sin^2 2\theta \mathrm{d}\theta *$	AI	1.10
			(4)	
(t	b)	$\dots \int \sin^2 2\theta \mathrm{d}\theta \to \dots \int \frac{1 - \cos 4\theta}{2} \mathrm{d}\theta$	M1	1.1b
		$\rightarrow \dots \left(\frac{\theta}{2} - \frac{1}{8}\sin 4\theta\right)$	dM1	2.1
		$\mu \int \sin^2 2\theta \mathrm{d}\theta \to \frac{\mu}{2} \left(\theta - \frac{1}{4} \sin 4\theta \right)$	A1	1.1b
		$\left\{\int_{0}^{a} x^{\frac{1}{2}} \sqrt{a - x} \mathrm{d}x\right\} = \frac{a^{2}}{4} \left(\frac{\pi}{2} - 0 - 0\right) = \frac{1}{8} \pi a^{2}$	A1	1.1b
			(4)	
			(8	8 marks)
		Notes		
(a) B1:	$\frac{\mathrm{d}x}{\mathrm{d}\theta} =$	$2a\sin\theta\cos\theta$ or $dx = 2a\sin\theta\cos\theta d\theta$ o.e. seen or implied by their	substitution	
	Note	that writing $x = a \sin^2 \theta = \frac{a}{2} (1 - \cos 2\theta) \rightarrow \frac{dx}{d\theta} = a \sin 2\theta$ is correct.	Condone use	of $\frac{dx}{da}$
M1:	Attem	npts to substitute, fully replacing $x^{\frac{1}{2}}$ and $\sqrt{a-x}$ with θ 's and dx w	ith their $dx =$	=
	Look for $x^{\frac{1}{2}}\sqrt{a-x} dx \to f(\theta)g(\theta)h(\theta)$ where			
	• $f(\theta)$ is an attempt at $\sqrt{a\sin^2\theta}$ e.g. allow $a\sin\theta$ but just $a\sin^2\theta$ is not condoned			
	• $g(\theta)$ is an attempt at $\sqrt{a - a \sin^2 \theta}$ but not $\sqrt{a} - \sqrt{a \sin^2 \theta}$ unless $\sqrt{a - a \sin^2 \theta}$ is attempted first			
• $h(\theta) = \text{their } dx \text{ or their } \frac{dx}{d\theta} \text{ or } \frac{1}{\text{their } \frac{dx}{d\theta}}$ (in terms of θ only but condone da seen)				seen)
	Conde	one slips provided the intention is clear, e.g. $x^{\frac{1}{2}} \rightarrow \sqrt{a} \sin^2 \theta$ but x m	ust be elimi	nated.

There is no need to replace the limits and condone the absence of $d\theta$ and/or the integral sign for this mark.

dM1: Attempts to use $\sin 2\theta = 2\sin\theta\cos\theta$ to convert an integral of the form $\sin^2\theta\cos^2\theta\,d\theta$ or

e.g. the form
$$\int \sin \theta \cos \theta \sin 2\theta \, d\theta$$
 to $\int ... \sin^2 2\theta \, d\theta$

There is no need to replace the limits and condone the absence of $d\theta$ and/or the integral sign for this mark.

A1*: Replaces or considers limits $\{x=0 \Rightarrow\} \theta = 0, \{x=a \Rightarrow\} \theta = \frac{\pi}{2}$ at some stage before the given answer and proceeds with no errors to the given answer. The replaced limits may appear with their integral symbol and do not have to be justified and do not have to appear on every line. Condone infrequent slips in notation, e.g. $\sin \theta^2$ in a line as long as it is not consistently poor. You must see the integral sign with the correct limits and the $d\theta$ together in the given answer.

(b)

M1: Adopts an appropriate strategy by using the double angle identity to obtain an integrable form

$$\sin^2 2\theta d\theta \rightarrow \dots \int \frac{\pm 1 \pm \cos 4\theta}{2} d\theta$$
 which may be seen as

$$\lambda \int \sin^2 2\theta \, d\theta \rightarrow \frac{\lambda}{2} \int \pm 1 \pm \cos 4\theta \, d\theta$$
 with the $\frac{1}{2}$ absorbed into their coefficient of the integral

integral.

- **dM1:** Integrates into the form $\pm p\theta \pm q \sin 4\theta$
- A1: Correct integration of $\mu \int \sin^2 2\theta \, d\theta$ to $\frac{\mu}{2} \left(\theta \frac{1}{4} \sin 4\theta \right)$. Here μ may be 1. Condone lack of limits here.
- A1: Applies limits to the correct integral and proceeds to $\frac{1}{8}\pi a^2$ following correct work. There is no need to see 0 substituted in and condone any omission of integral signs and/or $d\theta$

Note that
$$\frac{a^2}{4} \left[\theta + \frac{1}{4} \sin 4\theta \right]_0^{\frac{\pi}{2}} = \frac{1}{8} \pi a^2$$
 is incorrect and scores M1dM1A0A0
Use of $\sin^2 2\theta = \frac{\pm 1 \pm \cos k\theta}{2}$ with $k \neq 4$ scores M0dM0A0A0 but may lead to $\frac{1}{8} \pi a^2$
Condone use of x in place of θ e.g. $\frac{a^2}{4} \left[x - \frac{1}{4} \sin 4x \right]_0^{\frac{\pi}{2}} = \frac{1}{8} \pi a^2$

See overleaf for some alternative approaches.

Alternative 13(a) working backwards:

$$\frac{1}{2}a^{2}\int_{0}^{\frac{\pi}{2}}\sin^{2}2\theta \,\mathrm{d}\theta \qquad \qquad \frac{\mathrm{d}x}{\mathrm{d}\theta} = 2a\sin\theta\cos\theta \text{ score B1 (as in main scheme)}$$
$$= \frac{1}{2}a^{2}\int_{0}^{\frac{\pi}{2}}(2\sin\theta\cos\theta)(2\sin\theta\cos\theta)\,\mathrm{d}\theta$$
$$= a\int_{0}^{\frac{\pi}{2}}\sin\theta\cos\theta\,\mathrm{d}x$$

Score M1 here for using the double angle identity and replacing $\dots \sin \theta \cos \theta \, d\theta$ with dx

$$=a\int_0^a\sqrt{\frac{x}{a}}\sqrt{1-\frac{x}{a}}\,\mathrm{d}x$$

Score dM1 here for a full attempt to replace all trig leading to everything in terms of x only

Must come from the form $\int ... \sin \theta \cos \theta \, dx$

 $= \left[\theta \sin^2 2\theta\right]_0^{\frac{\pi}{2}} - 4 \int_0^{\frac{\pi}{2}} \theta \sin 2\theta \cos 2\theta \, \mathrm{d}\theta$

A1 fully correct with limits replaced / considered before the final line and the final line fully correct with limits, integral sign and dx as per the main scheme.

Alternative 13(b) via IBP Way 1:

$$\int_{0}^{\frac{\pi}{2}} \sin^{2} 2\theta \, \mathrm{d}\theta \qquad \begin{cases} u = \sin^{2} 2\theta & v' = 1 \\ u' = 4\sin 2\theta \cos 2\theta & v = \theta \end{cases}$$

$$= \left[\theta \sin^2 2\theta\right]_0^{\frac{\pi}{2}} - 2\int_0^{\frac{\pi}{2}} \theta \sin 4\theta \,\mathrm{d}\theta \qquad \begin{cases} u = \theta & v' = \sin 4\theta \\ u' = 1 & v = -\frac{\cos 4\theta}{4} \end{cases}$$

$$= \left[\theta \sin^2 2\theta\right]_0^{\frac{\pi}{2}} - 2\left[\left[-\frac{\theta \cos 4\theta}{4}\right]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} -\frac{\cos 4\theta}{4} d\theta\right]$$
 Score M1 here.

 $= \left[\theta \sin^2 2\theta\right]_0^{\frac{\pi}{2}} - 2\left[-\frac{\theta \cos 4\theta}{4} + \frac{\sin 4\theta}{16}\right]_0^{\frac{\pi}{2}}$ Score dM1 here, A1 if correct (ignoring limits). $= \left[\theta \sin^2 2\theta + \frac{\theta \cos 4\theta}{2} - \frac{\sin 4\theta}{2}\right]_0^{\frac{\pi}{2}}$

$$= \left(0 + \frac{\pi}{4} - 0\right) - \left(0 + 0 - 0\right) = \frac{\pi}{4} \rightarrow \left\{\int_{0}^{a} x^{\frac{1}{2}} \sqrt{a - x} \, dx = \right\} = \frac{1}{8}\pi a^{2} \text{ score A1* (with no errors).}$$

Alternative 13(b) via IBP Way 2:

$$\int_{0}^{\frac{\pi}{2}} \sin^{2} 2\theta \, d\theta \qquad \begin{cases} u = \sin 2\theta \qquad v' = \sin 2\theta \\ u' = 2\cos 2\theta \qquad v = -\frac{\cos 2\theta}{2} \end{cases}$$
$$= \left[-\frac{\sin 2\theta \cos 2\theta}{2} \right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} -\cos^{2} 2\theta \, d\theta \end{cases}$$
$$\Rightarrow \int_{0}^{\frac{\pi}{2}} \sin^{2} 2\theta \, d\theta + \int_{0}^{\frac{\pi}{2}} \sin^{2} 2\theta \, d\theta = \left[-\frac{\sin 2\theta \cos 2\theta}{2} \right]_{0}^{\frac{\pi}{2}} + \int_{0}^{\frac{\pi}{2}} \cos^{2} 2\theta \, d\theta + \int_{0}^{\frac{\pi}{2}} \sin^{2} 2\theta \, d\theta \end{cases}$$
$$\Rightarrow 2 \int_{0}^{\frac{\pi}{2}} \sin^{2} 2\theta \, d\theta = \left[-\frac{\sin 2\theta \cos 2\theta}{2} \right]_{0}^{\frac{\pi}{2}} + \int_{0}^{\frac{\pi}{2}} 1 \, d\theta \qquad \text{Score M1 here.}$$
$$\Rightarrow 2 \int_{0}^{\frac{\pi}{2}} \sin^{2} 2\theta \, d\theta = \left[-\frac{\sin 2\theta \cos 2\theta}{2} + \theta \right]_{0}^{\frac{\pi}{2}} \qquad \text{Score dM1 here, A1 if correct including the 2 (ignoring limits).}$$
$$\Rightarrow \int_{0}^{\frac{\pi}{2}} \sin^{2} 2\theta \, d\theta = \frac{1}{2} \left(0 + \frac{\pi}{2} \right) - \frac{1}{2} (0 + 0) = \frac{\pi}{4}$$
$$\Rightarrow \left\{ \int_{0}^{a} x^{\frac{1}{2}} \sqrt{a - x} \, dx = \right\} = \frac{1}{8} \pi a^{2} \qquad \text{score A1* (with no errors).}$$

Quest	ion Scheme	Marks	AOs	
14(a	$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{k}{\sqrt{r}}$	B1	3.3	
		(1)		
(b)	$0.9 = \frac{k}{\sqrt{16}} \Longrightarrow k = 3.6$	B1	3.4	
	$\int \sqrt{r} \mathrm{d}r = \int "3.6" \mathrm{d}t \Longrightarrow \dots$	M1	2.1	
	$\frac{2}{3}r^{\frac{3}{2}} = "3.6"t \{+c\}$	A1	1.1b	
	$t = 10, r = 16 \Longrightarrow \frac{2}{3} \times 16^{\frac{3}{2}} = 3.6 \times 10 + c \Longrightarrow c = \dots$	dM1	3.4	
	$r^{\frac{3}{2}} = 5.4t + 10$ *	A1*	1.1b	
		(5)		
(c)	$t = 20 \Longrightarrow r = (5.4(20) + 10)^{\frac{2}{3}} = \dots$	M1	3.4	
	r = 24.1 cm	A1	1.1b	
		(2)		
(d)	(The model will not hold indefinitely as) the balloon may burst	B1 (1)	3.5b	
		(1)	(9 marks)	
	Notes		()	
(a) B1: Correctly sets up the model. $\frac{dr}{dt} \propto \frac{1}{\sqrt{r}}$ scores B0 unless e.g. $\frac{dr}{dt} = \pm \frac{k}{\sqrt{r}}$ is seen but condone $\frac{dr}{dt} = \pm \frac{k}{\sqrt{r}}$ being seen at the start of (b). They may use any letter except <i>t</i> or <i>r</i> in place of <i>k</i> .				
(b)	Note: candidates using $\frac{dr}{dt} = \pm \frac{1}{\sqrt{r}}$ in (b) can score maximum B0M1A1dM0A0			
B1:	$k = 3.6$ coming from $\frac{dr}{dt} = \frac{k}{\sqrt{r}}$ (or $k = \frac{5}{18}$ coming from $\frac{dr}{dt} = \frac{1}{k\sqrt{r}}$) and from	com use of r	= 16 and	
	$\frac{dr}{dt} = 0.9$ but note that this may occur later in their working, which is perfectly fine provided it is			
	from acceptable work. Note e.g. $k = -3.6$ coming from $\frac{dr}{dt} = -\frac{k}{\sqrt{r}}$ is correct.			
	Note, however, that an attempt to find k from comparing coefficients betw	veen $r^{\frac{3}{2}} = 1.5$	kt + c and	
	$r^{\frac{3}{2}} = 5.4t + 10$ is not acceptable (see special case).			
	They can also find k by differentiating their $r = f(t)$ and substituting $t = 10$, $r = 16$ and $\frac{dr}{dt} = 0.9$			
	if they have also used $t = 10$, $r = 16$ in their $r = f(t)$. This sets up simultaneous equations where c can be eliminated. Use Review if you are unsure if their approach is acceptable.			

M1:	Separates the variables for their differential equation correctly and attempts to integrate both sides.
	Must be a differential equation of the form $\frac{dr}{dt} = f(r)$ for some function $f(r)$ independent of <i>t</i> .
	Evidence of $r^n \to r^{n+1}$, or e.g. $\frac{1}{r} \to \ln r$ is sufficient for their attempt to integrate in <i>r</i> , but <i>k</i>
	must be integrated to kt o.e. e.g. $\frac{dr}{dt} = \frac{k}{r^2} \Rightarrow r^2 \frac{dr}{dt} = k \Rightarrow \lambda r^3 = kt \{+c\}$ would score this mark.
	Note that they may divide by k (or 3.6) prior to integrating. Here, 1 must be integrated to t .
A1:	Correct integration for their k. Allow this mark if they have not found k, so allow e.g.
	$\frac{2}{3}r^{\overline{2}} = kt\{+c\}$ with/without the constant of integration but the $\frac{2}{3}$ must be evident in some way.
dM1:	Condone spurious notation for this intermediate mark e.g. integral signs left in after integrating. Uses $t = 10$, $r = 16$ in their equation to find the constant of integration. This mark is dependent on the first method mark.
	Must have already found a value for k using a valid strategy and the constant of integration must be present.
	Those that found k from comparing coefficients between $r^{\frac{3}{2}} = \frac{3}{2}kt + c$ and $r^{\frac{3}{2}} = 5.4t + 10$ may
A1*:	not score this mark. Correct equation from correct working. May be seen at the start of (c). Must follow A1 earlier so do check if this has been obtained fortuitously.
SC:	It is possible to compare coefficients (following integration) between $r^{\frac{3}{2}} = \frac{3}{2}kt + c$ and
	$r^{\frac{3}{2}} = 5.4t + 10$ to deduce the value of k as 3.6 (or just write their coefficient as 5.4). The maximum that can be scored this way or by a similar invalid approach is B0M1A1dM0A0
(c) M1:	Substitutes $t = 20$ into the given equation and uses correct processing to find the value of r
	e.g. substitutes $t = 20$ into $\frac{2}{3}r^{\frac{3}{2}} = 72 + \frac{20}{3} \Longrightarrow r = \left(\frac{3}{2}\left(72 + \frac{20}{3}\right)\right)^{\frac{2}{3}} = \dots$
	Their work <i>should</i> lead to the correct answer so the index work must be correct e.g. $\sqrt{118^3}$ is M0.
	$\sqrt[3]{118^2}$ or $118^{\frac{2}{3}}$ are acceptable as values, i.e., the bracket must be evaluated.
	May be implied by awrt 24 (cm) following $r^{\frac{3}{2}} = 118$ or by awrt 24.1 (cm). Ignore units for M1.
A1:	cao 241mm or 241 or 24.1cm but do not accept 24.1 or e.g. $\sqrt[3]{118^2}$ cm Correct answer with units implies both marks.
(d) B1:	 Examples of acceptable answers (which must relate to the model in context): (The model will not hold indefinitely as) the balloon may burst/pop The balloon is unlikely to be (perfectly) spherical (condone circular) The model predicts the balloon will increase in size without limit (which is unrealistic) Note t→∞⇒r→∞ is unrealistic / impossible scores B0 unless they reference e.g. the radius. Condone the presence of additional remarks such as "the balloon may not inflate at the same rate" or "the radius of the balloon might not start at 0" that have already been addressed in the

model, but these answers alone score B0.

Question		Scheme	Marks	AOs	
15(i)		$k^2 - 4k + 5 = (k - 2)^2 + \dots$	M 1	2.1	
		$k^{2}-4k+5=(k-2)^{2}+1$ so $k^{2}-4k+51$	A1*	2.4	
		so $k^2 - 4k + 5$ is always positive*			
		Notos	(2)		
(i)	Note	: Using e.g. x throughout is acceptable for both marks.			
M1:	Start	s the process of showing the given expression is positive.			
Completing the square requires $(k-2)^2 \pm$					
	Differentiation requires them to differentiate to a linear expression in k , set = 0 (which may be				
	implied), solve for k and substitute their k into $k^2 - 4k + 5$ to reach a value. Ignore e.g. $\frac{dy}{dx}$				
	Disc	riminant requires a calculation of $b^2 - 4ac = (\pm 4)^2 - 4 \times 1 \times 5 \{=-4\}$ at	nd might be	seen	
embedded in the quadratic formula. Sketches on their own are insufficient without working to find the minimum point algebra Stating the minimum is (2, 1) without any evidence is M0. A1*: Completes the proof with no errors and correct reasoning. Accept e.g. "hence proved" in place of "so $k^2 - 4k + 5$ is always positive" as long as the sufficient justification for it being "proved".				ebraically. here is	
	As a	minimum expect to see e.g.: $(1 - 2)^2 = 0$			
• $k^2 - 4k + 5 = (k - 2)^2 + 1$ which is always positive as $(k - 2)^2 \dots 0$ (or as squares are a positive or zero). Must be a correct statement. Do not condone a $(k - 2)^2 > 0$				e always	
	• $k^2 - 4k + 5 = (k - 2)^2 + 1$ so (2, 1) is the minimum (point) so $k^2 - 4k + 5$ is always positive				
	• $k^2 - 4k + 5 = (k - 2)^2 + 1$ so $k = 2 + \sqrt{-1}$ hence $k^2 - 4k + 5$ has no real roots and as k^2 has a				
	 positive coefficient (condone e.g. positive k² or positive quadratic or a > 0), hence proved. 2k-4=0 ⇒ k=2 ⇒ k²-4k+5=1 is the minimum value so k²-4k+5 is always positive. 				
	• $b^2 - 4ac = 16 - 20 \le 0$ so $k^2 - 4k + 5 = 0$ has no real roots and as k^2 has a positive coefficient (condone e.g. positive k^2 or positive guadratic or $a > 0$) hence proved				
	Note that stating $k^2 - 4k + 5 = (k-2)^2 + 1 > 0$ alone is not sufficient for the A1*				
	Simi	larly, stating $k^2 - 4k + 5 = (k-2)^2 + 1 > 0$ because $(k-2)^2 > 0$ (or $(k-2)^2 > 0$)	$(k-2)^2$ is po	sitive) is	
50.	SC: Attempts at completing the square for $k = 2n$ and/or $k = 2n+1$ (or $k = 2n-1$) can score M1 provided at least one is attempted as for as $\binom{n}{2}^2 + \frac{n}{2} = 2n + 1$				
sc:					
	provided at least one is attempted as far as $() +$ e.g. to $(2n-2) +$ or e.g. $4(n-1) +$ Candidates are unlikely to complete the argument to score A1 (it is not sufficient to just				
	$k = 2n \rightarrow k^2 - 4k + 5 = 4n^2 - 8n + 5$ leading to $(2n-2)^2 + 1$ or $4(n-1)^2 + 1$				
	k = 2	$2n+1 \rightarrow k^2 - 4k + 5 = 4n^2 - 4n + 2$ leading to $(2n-1)^2 + 1$ or $4\left(n - \frac{1}{2}\right)^2$	$\Big)^2 + 1$		
	k = 2	$2n-1 \rightarrow k^2 - 4k + 5 = 4n^2 - 12n + 10$ leading to $(2n-3)^2 + 1$ or $4\left(n - \frac{1}{2}\right)^2 + 1$	$\left(\frac{3}{2}\right)^2 + 1$		

Question	Scheme	Marks	AOs
15(ii)	Attempts to solve any 1 pair of the relevant 11 sim. equations.		
	e.g. one of		
	$3x + 2y = 28 \qquad $	M1	2.1
	$2x-5y=1 \int x^{2} x^{2} \dots (y^{2}-\dots)^{2}$		
	or (see notes for all 11)		
	Attempts to solve any 2 pairs of the relevant 11 sim. equations		
	with at least one correct and correctly rejected.		
	e.g. both		
	$\begin{vmatrix} 3x+2y=28\\ 2x-5y=1 \end{vmatrix} \Rightarrow x = \frac{142}{19}, \left(y = \frac{53}{19} \right) \text{ Not integers}$	dM1 (A1 on	2.2a
	and	EPEN)	2.24
	3x + 2y = 7		
	$2x-5y=4 \} \Longrightarrow x =, (y =)$		
	or (see notes for all 11 options)		
	Attempts to solve all 5 pairs of the relevant sim. equations with		
	positive RHS		
	or e.g.		
	3x+2y=28 $2x-5y=1 \Rightarrow x = \frac{142}{19}, (y = \frac{53}{19})$ Not integers		
	and	ddM1	2.1
	3r + 2y - 7		
	3x + 2y = 7 $2x - 5y = 4$ $\Rightarrow x =, (y =)$		
	and		
	all other cases are not possible as $3x + 2y \ge 5$		
	Requires:		
	• All cases considered, with correct values and rejected	A 1	2.4
	• Correct reasons given in each case e.g. "not integers"	AI	2.4
	• Concluding statement e.g. "hence proven"		
		(4)	
			(6 marks)
Notes			

15(ii) General Note:

Throughout this question we are condoning if candidates do not reference the following two points which are deemed fairly trivial and acceptable to be omitted at A-level:

- As x and y are integers then both 3x + 2y and 2x 5y are integers.
- As x and y are positive then 3x + 2y > 0

As such, we only *require* candidates to prove that there are no positive integer solutions *x* and *y* to simultaneous equations that have a positive RHS.

Note: Any attempt to solve the given simultaneous equations does not score any marks on its own. Any attempts that use substitutions such as x = 2n etc. are unlikely to score any marks. There are other methods to eliminate some pairs of simultaneous equations e.g. by showing that the only solution to 3x + 2y = 7 is (1, 2) which is not on 2x - 5y = 4. Use Review in such cases.

- M1: Attempt to solve any one of the other 11 possible cases (labelled A-K) below to find a value for x or a value for y. The attempt may be implied by a value for x or y which need not be correct.
- **dM1:** Attempts to solve any two of the other 11 possible cases below to find a value for x or a value for y with at least one correct and correctly rejected. It is not necessary to find both values of x and y unless the correct value found does not cause a contradiction (see cases D and G).
- **ddM1:** Attempts to solve all 5 pairs (*A*-*E*) of the relevant simultaneous equations with positive RHS **or** attempts to solve cases *A* and *B* and justifies that these are the only cases that need checking using either:
 - $3x + 2y \ge 5$ (because x and y are positive) or
 - 3x+2y > 2x-5y (because x and y are positive) [cases F, G and H do not need checking using this approach because of the general note]
- A1: Their values for x and y do not need to be correct for this mark as long as the dM1 is scored.A1: cso Shows that all necessary cases are impossible with correct values, correct reasons, and a minimal conclusion e.g. "hence proved". There is no need to say "contradiction" or restate the objective (you can also ignore any inaccurate attempt to restate the objective).

All 5 pairs of simultaneous may be rejected in one go if the rejection is sufficiently clear. The mechanics of solving the simultaneous equations does not need to be shown.

A:
$$3x+2y=28$$

 $2x-5y=1$ $\Rightarrow x = \frac{142}{19}, (y = \frac{53}{19})$ Not integers

 $B: \quad \begin{array}{c} 3x+2y=7\\ 2x-5y=4 \end{array} \Rightarrow x = \frac{43}{19}, \left(y=\frac{2}{19}\right) \quad \text{Not integers} \end{array}$

$$C: \quad 3x+2y=4 \\ 2x-5y=7 \end{cases} \Rightarrow x = \frac{34}{19}, \left(y = -\frac{13}{19}\right) \text{ Not integers/not positive}$$

D:
$$3x+2y=2 \\ 2x-5y=14 \Rightarrow (x=2), y=-2 \text{ Not positive}$$

 $E: \quad \frac{3x+2y=1}{2x-5y=28} \Rightarrow x = \frac{61}{19}, \left(y = -\frac{82}{19}\right) \text{ Not integers/not positive}$

$$F: \quad \frac{3x+2y=-1}{2x-5y=-28} \Rightarrow x = -\frac{61}{19}, \left(y = \frac{82}{19}\right) \text{ Not integers/not positive}$$

G:
$$3x + 2y = -2$$

$$2x - 5y = -14$$
 $\Rightarrow x = -2, (y = 2)$ Not positive

 $H: \quad 3x+2y=-4 \\ 2x-5y=-7 \end{cases} \Rightarrow x = -\frac{34}{19}, \left(y = \frac{13}{19}\right) \text{ Not integers/not positive}$

$$I: \quad \frac{3x+2y=-7}{2x-5y=-4} \Rightarrow x = -\frac{43}{19}, \left(y = -\frac{2}{19}\right) \text{ Not integers/not positive}$$

 $J: \quad 3x+2y=-14 \\ 2x-5y=-2 \end{cases} \Rightarrow x = -\frac{74}{19}, \left(y = -\frac{22}{19}\right) \text{ Not integers/not positive}$

$$K: \quad 3x+2y=-28 \\ 2x-5y=-1 \end{cases} \Rightarrow x = -\frac{142}{19}, \left(y = -\frac{53}{19}\right) \text{ Not integers/not positive}$$

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom