

# Mark Scheme (Results)

## Summer 2024

Pearson Edexcel GCE In Mathematics (9MA0) Paper 31 Statistics

#### **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

#### Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <a href="https://www.pearson.com/uk">www.pearson.com/uk</a>

Summer 2024 Question Paper Log Number 74093 Publication Code 9MA0\_01\_2406\_MS All the material in this publication is copyright © Pearson Education Ltd 2024

#### **General Marking Guidance**

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

### EDEXCEL GCE MATHEMATICS General Instructions for Marking

- 1. The total number of marks for the paper is 50.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
  - **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
  - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
  - **B** marks are unconditional accuracy marks (independent of M marks)
  - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol  $\sqrt[4]{}$  will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp\_decimal places
- sf significant figures
- **\*** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 5. Where a candidate has made multiple responses <u>and indicates which response</u> <u>they wish to submit</u>, examiners should mark this response.

If there are several attempts at a question <u>which have not been crossed out</u>, examiners should mark the final answer which is the answer that is the <u>most</u> <u>complete</u>.

- 6. Ignore wrong working or incorrect statements following a correct answer.
- 7. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used.

| Qu 1                     | Scheme                                                                                                                                            | Marks                                                                                                                                        | AO               |  |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|
| (a)                      | $X \sim B(10, \frac{1}{6}) $ [Allow 0.167 or better for $\frac{1}{6}$ ]                                                                           | M1                                                                                                                                           | 3.3              |  |
| (i)                      | [P(X=3)=] 0.155045 <b>awrt</b> <u>0.155</u>                                                                                                       | A1                                                                                                                                           | 1.1b             |  |
| (ii)                     | $[P(X < 3) = P(X \le 2) =] 0.775226 \text{ awrt } 0.775226$                                                                                       | A1                                                                                                                                           | 1.1b             |  |
|                          |                                                                                                                                                   | (3)                                                                                                                                          |                  |  |
| (b)                      | [Let $D = \text{no. of days when } X = 3$ ] $D \sim B(60, "0.155")$                                                                               | M1                                                                                                                                           | 3.3              |  |
|                          | $P(D \ge 12) = 1 - P(D \le 11)$ [Allow $1 - P(D < 12)$ ]                                                                                          | MI                                                                                                                                           | 5.4<br>1.11      |  |
|                          | = 1 - 0.78819 awrt <u>0.212</u>                                                                                                                   | AI (3)                                                                                                                                       | 1.16             |  |
| (c)                      | $[n = 600, n = \frac{1}{2}]$ estimate = <b>100</b>                                                                                                | R1                                                                                                                                           | 3.4              |  |
| (0)                      | $[n = 000, p = \frac{1}{6}]$ estimate = $\frac{100}{100}$                                                                                         | (1)                                                                                                                                          | 5.4              |  |
| ( <b>d</b> )             | $\left( \int_{\overline{r}}^{2} \right)$                                                                                                          | (1)                                                                                                                                          |                  |  |
|                          | [S = total no. of sixes over 60 days.] $S \approx T \sim N\left("100", \sqrt{\frac{5}{6} \times 100}\right)$                                      | M1A1                                                                                                                                         | 3.3,1.1b         |  |
|                          | $P(S > 95) \approx P([T > ]95.5) \text{ or } P([Z > ]\frac{95.5 - "100"}{"9.128 - "}) \text{ or } P([Z > ]-0.49)$                                 | M1                                                                                                                                           | 3.4              |  |
|                          | = 0.688976 awrt <u>0.689</u>                                                                                                                      | A1 (4)                                                                                                                                       | 1.1b             |  |
|                          |                                                                                                                                                   | (11 m                                                                                                                                        | arks)            |  |
|                          | Notes                                                                                                                                             |                                                                                                                                              | ,                |  |
|                          | If you see any attempt using an <i>n</i> -sided die with <i>n</i> not equal to 6 pleas                                                            | e send to                                                                                                                                    | review.          |  |
| (a)                      | M1 for sight or use of the correct distribution. <u>Must</u> have B, or Bin or Bpd                                                                | or Bcd a                                                                                                                                     | nd the           |  |
|                          | correct value for <i>n</i> and <i>p</i> , just $n = 10$ , $p = \frac{1}{6}$ is MO                                                                 |                                                                                                                                              |                  |  |
|                          | Implied by one answer correct to 2dp <u>or</u> by sight of $\binom{10}{3} \left(\frac{1}{6}\right)^3 \left(\frac{5}{6}\right)^4$ or $\frac{1}{6}$ | Implied by one answer correct to 2dp <u>or</u> by sight of $\binom{10}{3} \left(\frac{1}{6}\right)^3 \left(\frac{5}{6}\right)^7$ or one of : |                  |  |
|                          | [P(X = 0) =] <b>0.16</b> (1), $[P(X = 1) =]$ <b>0.32</b> (3), $[P(X = 2) =]$ <b>0.29</b> (0), $[P(X = 2) =]$                                      | $\leq 3 = 0$                                                                                                                                 | <b>.93</b> (0)   |  |
| (i)                      | 1 <sup>st</sup> A1 for awrt 0.155                                                                                                                 |                                                                                                                                              |                  |  |
| (ii)                     | $2^{nd}$ A1 for awrt 0.775                                                                                                                        |                                                                                                                                              |                  |  |
| <b>(b)</b>               | 1 <sup>st</sup> M1 for selecting a correct model. Sight or use of correct binomial, ft the                                                        | eir (a)(i)                                                                                                                                   |                  |  |
|                          | May be implied by sight of $[P(D \le 11) = ] 0.78$ or 0.79 or $[P(D \le 11) = ] 0.78$                                                             | $\leq 12) = ] 0$                                                                                                                             | .87              |  |
|                          | $2^{nd}$ M1 for correct interpretation of "at least 12" and writing or using $1 - P(D \le 11)$                                                    |                                                                                                                                              |                  |  |
|                          | We are <u>not</u> attempting to ft their incorrect 0.155 on our calculat                                                                          | ors here.                                                                                                                                    |                  |  |
|                          | A1 for awrt 0.212 [Answer only 5/5]                                                                                                               |                                                                                                                                              |                  |  |
| (c)                      | B1 for 100 but must be seen in part (c) i.e. between (b) and (d)                                                                                  |                                                                                                                                              |                  |  |
| ( <b>d</b> )             | $1^{\text{st}}$ M1 for attempting normal <b>with mean = 100</b> <u>or</u> ft their answer to (c)                                                  |                                                                                                                                              |                  |  |
|                          | May be implied by the correct mean and a correctly labelled s.d. ( $\sigma$ )                                                                     | or var ( $\sigma$                                                                                                                            | · <sup>2</sup> ) |  |
|                          | 1 <sup>st</sup> A1 for correctly labelled standard deviation allow $\sqrt{\frac{250}{3}} = \sqrt{83.3} = 9.1$                                     | (28) o                                                                                                                                       | r                |  |
|                          | correctly labelled variance. Implied by N( $\mu$ , $\frac{250}{2}$ ) or correct answ                                                              | er                                                                                                                                           |                  |  |
|                          | $2^{nd}$ M1 for attempt at continuity correction i.e. sight of 95 + 0.5                                                                           | •••                                                                                                                                          |                  |  |
|                          | $2^{nd}$ A1 for awrt 0.689 [Answer only 4/4]                                                                                                      |                                                                                                                                              |                  |  |
| NB                       | If they don't state the model for 1 <sup>st</sup> M1 but just give probabiliti                                                                    | es with                                                                                                                                      |                  |  |
|                          | probability statements (Y is any letter):                                                                                                         |                                                                                                                                              |                  |  |
| $\sigma = \frac{250}{3}$ | 1 <sup>st</sup> M1 implied by: $P(Y > 94.5) = 0.52(63), P(Y > 95) = 0.52(39), P(Y > 95) = 0.52(39)$                                               | (95.5) = 0.                                                                                                                                  | 52(15)           |  |
| No cc                    | $1^{\text{st}}$ M1 $1^{\text{st}}$ A1 implied by: P(T > 95) = 0.70(805)                                                                           |                                                                                                                                              |                  |  |
|                          | $1^{\text{st}}$ M1 $1^{\text{st}}$ A1 $2^{\text{nd}}$ M1 implied by: P(T > 94.5) = 0.72(657)                                                      |                                                                                                                                              |                  |  |
|                          | <b>Exact binomial</b> gives $0.68567$ and will likely score $0/4$                                                                                 |                                                                                                                                              |                  |  |

| Qu 2         | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Marks          | AO    |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|
| (a)          | e.g. The <u>height (h)</u> decreases by about <u>1.28 m</u> for <u>each second</u> of the flight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B1             | 3.4   |
| (b)          | $H_0: \rho = 0$ $H_1: \rho < 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1)<br>B1      | 2.5   |
|              | [5% 1-tail cv = ] (+) 0.5494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M1             | 1.1a  |
|              | [r = -0.510  not sig] there is <u>insufficient</u> (o.e.) evidence of a negative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Δ 1            | 2.2h  |
|              | <u>correlation</u> between <u>height</u> (or <u>h</u> ) and <u>time</u> (or <u>t</u> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | 2.20  |
| (c)          | No – since points seem to follow a curve/quadratic (rather than a line)<br><u>or</u> since points are "non-linear" but regression line/ model is linear<br><u>or</u> e.g. between ( $t = 5$ and 7) height drops by much more than 2.56 m<br><u>or</u> e.g. gradient is positive up to $t = 3.5$ (line gradient < 0)<br><u>or</u> e.g. gradient is positive initially (line gradient < 0)<br><u>or</u> e.g. gradient is positive and then negative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (3)<br>B1      | 2.4   |
| (b)          | $(1, 20, 1, 0, 70, (1, 1)^2, (1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1)$ | (I)<br>D1      |       |
| ( <b>u</b> ) | h = 38.1 - 0.78 (t - k) with a suitable k i.e. in the range 3~4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BI             | 3.3   |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1)            |       |
|              | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ( o marks)     |       |
| (a)          | B1 for a suitable interpretation in context [value can be 1.3 or 1.28 or "just                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | st over 1"] pe | r sec |
| (b)<br>NB    | <ul> <li>NB "descends" implies "height decreases"<br/>Condone e.g. "decreases by – 1.28 m"</li> <li>B1 for both hypotheses correct in terms of ρ [accept a p or p but not r or r]<br/>Must be attached to H<sub>0</sub> and H<sub>1</sub></li> <li>M1 for a critical value corresponding to their H<sub>1</sub>:<br/>1-tail: awrt ± 0.549 or 2-tail (B0 scored for H<sub>1</sub>) : awrt ± 0.632 (tables 0.6319)<br/>If hypotheses are in words and can deduce whether one or two-tail then use their words.<br/>If no hypotheses or their H<sub>1</sub> is not clearly one or two-tail assume one-tail</li> <li>A1 a correct conclusion in context mentioning <u>correlation</u> and <u>height</u> and <u>time</u><br/>A comparison or statement such as "not sig" is not needed but if seen must be correct.<br/>Do NOT award this A mark if contradictory comments or working seen e.g. "reject H<sub>0</sub>"<br/><u>or</u> comparison of 0.510 with significance level of 0.05 <u>or</u> e.g. – 0.549 &gt; – 0.510<br/>Can award BOM1A1</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |       |
| SC           | <b>B0</b> (for 2-tail) <b>M0</b> (for $cv = \pm 0.549$ ) <b>scored:</b> Allow 1 mark (score as B0M0A1) for conclusion such as: " <u>insufficient</u> evidence of (negative) <u>correlation</u> between <u>height</u> and <u>time</u> of flight"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |       |
| (c)          | <ul> <li>B1 for saying no and giving a suitable supporting reason<br/>Don't allow "correlation" on its own instead of "gradient"</li> <li>B0 for simply saying "points don't lie close to a straight line" Need mention of curve or<br/>some other feature of scatter plot that <u>differs</u> from regression line.</li> <li>B0 for just "non-linear" without mention of the model being linear</li> <li>B0 for simply comparing 1 or 2 points – need a comment about general pattern</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |       |
| (d)          | B1 for a value of k in the range [3, 4.5] Do not need $k =$<br>Accept a value embedded in Jane's model. ISW any errors in multiplying out bracket.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | xet.  |

| Qu 3        | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Marks                                | AO            |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------|
| (a)         | Rain[fall] (allow [Mean] Windspeed)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B1 (1)                               | 1.2           |
| <b>(b</b> ) | $[\bar{x} = ] 15.2239 = awrt 15.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (1)<br>B1                            | 1.1b          |
|             | $\sigma_x = \sqrt{\frac{44.695.4}{184} - "15.22"^2}$ or $\sqrt{11.1(422)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M1                                   | 1.1b          |
|             | = 3.33800  awrt  3.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A1                                   | 1.1b          |
| (c)         | <u>Mean is higher</u> than average <b>OR</b> a <u>summer/spring</u> month<br>If they say winter/autumn they must explain that these are hotter                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (3)<br>M1                            | 2.4           |
|             | months for Perth.<br>[Perth is southern hemisphere or Australia so latest available]<br>month is <b>Oct</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Alcso                                | 2.2b          |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (2)<br>(6 marks)                     |               |
|             | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ( U marks)                           |               |
| (a)         | Answers may appear next to the question.<br>B1 for Rain[fall] or precipitation (e.g. allow Daily Total [or Mean or max] Rainfall etc)<br>(or allow Mean Windspeed or just "windspeed" BUT not max windspeed or "gust")<br>If they give more than one answer we take the <b>last one</b> .<br>(NB Actual windspeed mean is 8.2, sd 2.38. No other quantitative variables available)                                                                                                                                                                                                                                 |                                      |               |
| (b)         | <ul> <li>B1 for awrt 15.2 (Do not accept fractions or mixed numbers)</li> <li>M1 for a correct expression including square root (ft their mean)<br/>May be implied by an answer of 3.3 or better.</li> <li>A1 for awrt 3.34<br/>[Allow s = 3.3471 i.e. awrt 3.35 if correct formula/expression is seen]</li> </ul>                                                                                                                                                                                                                                                                                                 |                                      |               |
| (c)         | If answer in (b)(i) > 19.4 and an attempt is made in (c) please<br>for a reason mentioning that mean or temperature is higher (o<br>e.g. it is a <u>warmer/hotter</u> month is OK<br><u>or</u> sight of 19.4 > (their) 15.2<br>Only ft their 15.2 if it is less than 19.4 OR suggesting a summer/spring month.<br>Ignore incorrect statements that are irrelevant or don't contract<br>For incorrect statements that contradict score M0 A1cso dep on M1 scored for inferring October<br>Must choose just October not a range like August~October<br>(NB actual mean for Sep is 15.6 and sd 3.19 and this scores A | send to revie<br>.e.)<br>lict<br>A0) | w.            |
|             | Can accept for example "high mean so December" for M1A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |               |
| SC          | M1A1 for "October since Perth is in the southern hemisphere/Austral<br>M1A0 for "Sep <u>or</u> Nov <u>or</u> Dec <u>or</u> Jan <u>or</u> Feb<br><b>and</b> "Perth is in the southern he<br>M0A0 just "Perth is in the southern hemisphere/Australia" <u>without</u> a                                                                                                                                                                                                                                                                                                                                              | ia"<br>misphere/Aus<br>month M0A0    | stralia"<br>) |

| Qu 4         | Scheme                                                                                                                                                                       | Marks                 | AO             |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------|
| (a)          | $H_0: p = 0.1$ $H_1: p \neq 0.1$ [Allow 10% for 0.1]                                                                                                                         | B1                    | 2.5            |
|              | $[X \sim B(40, 0.1)] \implies P(X = 0) = 0.0148 $ [Allow any letter for X]                                                                                                   | M1                    | 3.3            |
|              | $P(X \ge 9) = 1 - P(X \le 8) = 1 - 0.9845 = 0.0155$                                                                                                                          | A1                    | 1.1b           |
|              | Critical region is $\{X = 0\} \cup \{X \ge 9\}$ (o.e.)                                                                                                                       | A1                    | 1.1b           |
|              |                                                                                                                                                                              | (4)                   |                |
| <b>(b</b> )  | ["0.0148" + "0.0155"] = 0.0303                                                                                                                                               | B1ft                  | 1.1b           |
| (c)          | [Provided 7 is not in their $CR$ ]                                                                                                                                           | (1)                   |                |
| (C)          | insufficient evidence to support Freya's belief                                                                                                                              | B1                    | 2.2b           |
|              |                                                                                                                                                                              | (1)                   |                |
|              |                                                                                                                                                                              |                       |                |
|              | Notes                                                                                                                                                                        | (6 marks)             |                |
|              | Mark (a) and (b) together for sight of the probabilities.                                                                                                                    |                       |                |
| (a)          | B1 for both hypotheses in terms of p or $\pi$ . Must be attached to H <sub>0</sub> and H                                                                                     | I,                    |                |
|              | M1 for <u>use</u> of the correct model. Implied by sight of at least one probabili                                                                                           | ty truncated of       | or             |
|              | rounded to at least 2sf from: 0.0155, 0.0148, 0.0805, 0.9845, 0.9581, 0.9949                                                                                                 |                       |                |
|              | Implied by sight of fully correct CR (with no probs) so e.g. $X = 0, X > 0$                                                                                                  | 8 scores M1.          | A0A0           |
|              | 1 <sup>st</sup> A1 for at least one correct probability (to at least 3sf) with its probability<br>i.e. for $P(Y = 0) = awrt(0.0148)$ or $P(Y > 0) = awrt(0.0155)$            | statement             |                |
|              | $2^{nd}$ A1( <b>dep on M1 and 1<sup>st</sup> A1</b> but not on B1)                                                                                                           |                       |                |
|              | for both correct probs (to at least 3 sf) and the correct critical region                                                                                                    |                       |                |
|              | Do not need set notation. Allow $X < 1$ and $X > 8$ or words e.g. "0 or greater than 8" etc                                                                                  |                       |                |
|              | Allow "," or "and" or "or" or " $\cap$ " between $X \leq 0$ and $X \geq 9$                                                                                                   |                       |                |
|              | $P(X = 0)$ and $P(X \ge 9)$ is $2^{nd} A0$                                                                                                                                   |                       |                |
| ( <b>b</b> ) | B1ft for awrt 3.03% or correct sum of their two probabilities (provided ea                                                                                                   | ch is less that       | n 0.5)         |
|              | Their probabilities must be to at least 2sf and relate to their CR                                                                                                           |                       | ,              |
|              |                                                                                                                                                                              |                       |                |
|              | To score in (c) they must have a CR of the form $(X = 0 \text{ or } X < a)$ and $X > M_{OV}$ has implied by $P(X < a)$ and $P(X > b)$ is a 2nd $A(x)$ by the sum of the form | b, where $b$ is $b$ . | $s \ge 7$      |
|              | May be implied by $F(A < a)$ and $F(A > b)$ i.e. $2^{-a}$ A0 in (a) but correct for                                                                                          | III. Need $D >$       | × a            |
| (c)          | B1 for a suitable comment in context that suggests <u>no support</u> for Freya'                                                                                              | s <u>belief/claim</u> | <u>1</u>       |
|              | or e.g. insufficient evidence of change in proportion/percentage of left-ha                                                                                                  | nded adults           |                |
|              | or e.g. proportion/percentage of left-handed adults is not different from 1                                                                                                  | 0% (or <u>is</u>      | <u>s 10%</u> ) |
|              | Do not allow contradictory comments e.g. "in CR so no support for l                                                                                                          | Freva's belief        | " is B0        |
|              |                                                                                                                                                                              |                       |                |
| NB           | A correct contextual answer in (c) using an <b>acceptance region</b> please ser                                                                                              | nd to review.         |                |
|              |                                                                                                                                                                              |                       |                |

| Qu 5           | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Marks                     | AO          |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------|
| (a)            | [P(H > 1.6) = ] 0.091211 = awrt 0.0912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B1                        | 1.1b        |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (1)                       |             |
| <b>(b)</b>     | Need <i>H</i> and <i>T</i> to be independent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B1                        | 2.4         |
|                | or events $\{H > 1.6\}$ and $\{T < 300\}$ are independent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (1)                       |             |
| $(\mathbf{a})$ | $[\mathbf{P}(T < 300) - 1, 0, 124(2816)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (1)<br>M1                 | 3 /         |
| (0)            | $[\Gamma(T < 500) - ] 0.124(2810)$<br>Prob both is: "0.0912 "x"0.124 "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M1                        | 3.4<br>1.1h |
|                | = 0.011335 = awrt 0.0113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A1                        | 1.1b        |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (3)                       |             |
| ( <b>d</b> )   | $16.3 - \mu$ 0.5244(0051) $29 - \mu$ 1.2816 (color 1.28155156)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N <i>K</i> 1 N <i>K</i> 1 | 3.1a        |
|                | $\frac{1}{\sigma} = -0.3244(0031), \frac{1}{\sigma} = 1.2810 \text{ (calc: } 1.28133130)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           | 1.1b        |
|                | e.g. $29 - 16.3 = \sigma("1.2816" - "-0.5244")$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M1                        | 1.1b        |
|                | $\sigma = 7.032115 = awrt 7.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A1                        | 1.1b        |
|                | $\mu = 19.9876 = 19.95 \le \mu \le 20.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A1                        | 3.2a        |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (5)                       |             |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (10 marks                 | s)          |
|                | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |             |
| (a)            | B1 for awrt 0.0912 (from calculator)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |             |
|                | D1 for a suitable many indication and include the data of the data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |             |
| (D)            | B1 for a suitable reason mentioning of implying H and I are independent<br>Allow: e.g. "they"/"each event"/" $P(H)$ and $P(T)$ "/"the variables" and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | "independ                 | ont"        |
|                | B0 for "the results" /"the values" are independent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | independ                  | em          |
|                | Ignore other comments that are not incorrect or contradictory.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |             |
|                | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |             |
| (c)            | 1 <sup>st</sup> M1 for using model for <i>T</i> to attempt to find $P(T < 300)$ e.g. sight of 0.124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | or better <u>or</u>       |             |
|                | sight of $\pm \left(\frac{300-330}{100}\right)$ or $\pm \left(\frac{5-5.5}{1000}\right)$ or $7-\pm 1.15(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |             |
|                | $\frac{1}{26} = \frac{1}{26} $ |                           |             |
|                | $2^{nd}$ M1 for multiplying their two probabilities together ft part (a) and their P(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r < 300) pro              | vided       |
|                | both values are probabilities. NB M0M1 is possible here                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |             |
|                | A1 for awrt 0.0113 [Correct answer with no incorrect working 3/3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |             |
| <b>(d)</b>     | 1st M1 for standardining 16.2 and setting a smaller produce relation 0.5 (1) (0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |             |
| ( <b>u</b> )   | 1° M1 for standardising 16.3 and setting equal to z value where $0.5 <  z  < 0.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |             |
|                | 2 <sup>rd</sup> M1 for standardising 29 and setting equal to z value where $1 <  z  < 1.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • •                       | 1 1         |
|                | 3 <sup>rd</sup> M1 dep on 1 <sup>st</sup> or 2 <sup>rd</sup> M1 for solving their two linear eq ns – reach an eq n $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | in one varia              | ble         |
|                | May be implied by sign of $\sigma = 7$ (or better) or $\mu = 20$ (or better)<br>For 1st A mark we must also see one of $-0.5244$ or $1.2816$ (or better) use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d in thair a              | au'ne       |
|                | OR both z values correct to 3dn i.e. $-0.5244$ of 1.2010 (of better) <u>use</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>u</u> in then e        | qu ns       |
|                | 1 <sup>st</sup> A1 for $\sigma$ = awrt 7.03 (but see 3 <sup>rd</sup> case below)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |             |
|                | $2^{\text{nd}}$ A1 for $\mu = \text{in} [19.95, 20.0]$ (i.e shouldn't see something rounding down to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 20.0)                   |             |
|                | Allow 20 from equations with suitable $z$ values (see examples below)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |             |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |             |
| NB             | Use of $-0.524$ and 1.28 [would give 7.0399 and 19.988] and scores M3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A0A1                      |             |
|                | Use of – 0.524 and 1.2816 [would give 7.033 and 19.99] and scores M3A1A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |             |
|                | Use of $-0.5244$ and 1.28 [would give 7.038 and 19.99] and scores M3A1A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |             |
|                | Both z values correct to 3 dn i.e. $-0.524$ and $1.282$ [should give 7.032 and 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 841 scores                | Δ1Δ1        |
|                | 1000% values concer to Sup i.e. $-0.524$ and $1.262$ [should give 7.052 and 19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |             |

| Qu 6         | Scheme                                                                                                                                                               | Marks                | AO      |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------|
| (a)          | A, C or A, D or B, D [Allow things like $A \cap D$ ]                                                                                                                 | B1                   | 1.2     |
|              |                                                                                                                                                                      | (1)                  |         |
| (D)          | $P(C) = 0.6$ and $P(B) = p + 0.32$ and $P(B \cap C) = 0.27$                                                                                                          | M1                   | 1.1b    |
|              | $\underline{\text{or}} (0.08 + 0.25 + 0.27) \times (0.27 + 0.05 + p) = 0.27 \underline{\text{or}} 0.27 + 0.05 + p = \frac{0.27}{0.6} = 0.45$                         |                      | 1110    |
|              | [p + 0.32 = 0.45  so]  p = 0.13                                                                                                                                      | A1                   | 2.2a    |
| (c)          |                                                                                                                                                                      | (2)                  |         |
|              | $\left[ \left[ P(A \mid B') \right] = \frac{q}{q+r+0.25+0.08}  \underline{\text{or}}  \frac{q}{1-(0.05+"0.13"+0.27)}  \underline{\text{or}}  \frac{q}{0.55} \right]$ | M1                   | 2.1     |
|              | q + r = 1 - 0.65 - 0.13 [= 0.22]                                                                                                                                     | M1                   | 1.1b    |
|              | Since $r \ge 0$ the greatest value of q is "0.22" so $P(A   B') \le 0.4$ or $\frac{2}{5}$                                                                            | A1                   | 2.2a    |
|              |                                                                                                                                                                      | (3)                  |         |
| ( <b>d</b> ) | $\left[P(B A') = \frac{0.27 + 0.13''}{0.27 + 0.13''} = 0.5 \text{ or } \frac{0.27 + 0.13''}{0.27 + 0.13''} = 0.5\right]$                                             | М1                   | 1 1h    |
|              | 1 - (q + 0.05)                                                                                                                                                       | 101 1                | 1.10    |
|              | r = 0.07,                                                                                                                                                            | A1                   | 1.1b    |
|              | q = 0.15                                                                                                                                                             | AIII $(2)$           | 1.10    |
| (e)          |                                                                                                                                                                      | (3)                  |         |
|              | $\left  P\left( \left[ A \cup B \right] \cap C \right) = \left  \left[ 0.25 + 0.08 \right] = \underline{0.33} \right.$                                               | B1                   | 1.1b    |
|              |                                                                                                                                                                      | (1)                  |         |
| ( <b>f</b> ) | e.g. $B \cap [A \cup C]'$ or $B \cap A' \cap C'$ or $(B \cap A') \cap (B \cap C')$ o.e.                                                                              | B1                   | 1.1b    |
|              |                                                                                                                                                                      | (1)                  |         |
|              | Notor                                                                                                                                                                | (11 ma               | rks)    |
| (a)          | B1 for a correct pair. If more than one pair is given then all must be correct                                                                                       |                      |         |
|              | $P(A)$ and $P(C)$ etc is B0 $P(A \cap C) = 0$ is B0 but condone things like A                                                                                        | $\cap C = \emptyset$ |         |
|              | In parts (b) – (d) we will condone poor notation and mark equations/e                                                                                                | xpressio             | ns      |
| <b>(b)</b>   | M1 for all relevant labelled probabilities listed or a correct equation/expression                                                                                   | on for p             |         |
|              | A1 for $p = 0.13$                                                                                                                                                    |                      |         |
|              | In parts (c) and (d) they can use letter $p$ or we ft their value for $p$ provided                                                                                   | l a proba            | bility  |
| (c)          | 1 <sup>st</sup> M1 for a correct method for $P(A   B')$ in q (and r) ft their p. May be done                                                                         | in stages            |         |
|              | e.g. find correct expression for $P(B')$ , simplify incorrectly then use $q \in \mathbb{R}^{nd}$ M1 for a correct equation for $q + r = 0$ and                       | over this $a = 0.22$ |         |
|              | <b>NB</b> sight of $\frac{0.22}{0.55}$ will score M1M1                                                                                                               | <i>q</i> = 0.22      |         |
|              | A1 for 0.4 i.e. deducing the maximum value of $P(A   B')$ . Allow $\leq 0.4$ or                                                                                      | $P(A \mid B')$       | = 0.4   |
|              | Can award 3/3 for $P(A   B') = 0.4$ but not 0.4 alone as it can come from                                                                                            | n e.g P(C            | C')     |
| ( <b>d</b> ) | M1 for a correct equation for r (or q) only can have p or ft their value for p                                                                                       | ).                   |         |
|              | May be in stages                                                                                                                                                     |                      |         |
|              | e.g. find $P(A') = 0.27 + 0.25 + 0.08 + p + r$ but make a slip in getting 0.                                                                                         | 6 then us            | e this. |
|              | 1 <sup>st</sup> A1 for $r = 0.07$ or $q = 0.15$<br>2 <sup>nd</sup> A1ft for $r = 0.07$ and $q = 0.15$ or values giving $q + r = 0.22$ provided by                    | th a and a           | r are   |
|              | probabilities. Obviously, $2^{nd}$ A1ft is dependent on the M1                                                                                                       | in y and i           | arc     |
| (e)          | B1 for 0.33                                                                                                                                                          |                      |         |
| (E)          | B1 for any correct expression Do not condone D(                                                                                                                      |                      |         |
| ( <b>f</b> ) | B1 for any correct expression. Do <b>not</b> condone P(                                                                                                              |                      |         |

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom