Please check the examination details belo	w before entering your candidate information
Candidate surname	Other names
Centre Number Candidate Nu	
Pearson Edexcel Inter	national Advanced Level
Thursday 23 January	y 2025
Morning (Time: 1 hour 20 minutes)	Paper reference WCH13/01
Chemistry	
International Advanced Su UNIT 3: Practical Skills in	-
You must have: Scientific calculator, ruler	Total Marks

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.

Information

- The total mark for this paper is 50.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

DO NOT WRITE IN THIS AREA

Answer ALL the questions. Write your answers in the spaces provided.

(b) Another student was given a solution containing one type of cation and two types of anion. DO NOT WRITE IN THIS AREA (i) The student warmed some of the solution in a test tube, before adding aqueous sodium hydroxide and holding damp red litmus paper at the mouth of the tube. From the results, the student identified the cation as the ammonium ion, NH₄⁺. Explain the student's inference. DO NOT WRITE IN THIS AREA (ii) To another test tube of the solution, the student added silver nitrate solution. A pale yellow precipitate was observed. The student then added an **excess** of dilute nitric acid. Effervescence was observed. Some of the precipitate dissolved. The student added an excess of **concentrated** ammonia solution to the remaining precipitate. The precipitate dissolved to form a colourless solution. Complete the table about the student's results. **NOT WRITE IN THIS AREA**

(2)

Formula of gas evolved **Formula** of the precipitate that dissolved in dilute nitric acid **Formula** of the precipitate that dissolved in concentrated ammonia solution

(Total for Question 1 = 11 marks)

3

00

 $Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$

Procedure

- Step **1** Weigh 0.030 g of magnesium ribbon.
- Step **2** Add approximately 25 cm³ of 2.0 mol dm⁻³ hydrochloric acid into a burette and carefully add 25 cm³ of water on top.
- Step **3** Push the magnesium ribbon into the open end of the burette so that it stays in position.
- Step **4** Quickly invert the burette. Clamp the burette vertically and take the burette reading.
- Step **5** Wait for the magnesium to start reacting. Take the final burette reading after all the magnesium has reacted.

A diagram of the experiment is shown.

	Explain why the volume of hydrochloric acid added to the burette in Step 2 does not need to be exact.	
	You must include a calculation.	(3)
(b)	State why the magnesium does not start reacting as soon as the burette is inverted in Step 4 .	
(b)	State why the magnesium does not start reacting as soon as the burette is inverted in Step 4 .	(1)
(b)		(1)
	inverted in Step 4 .	
	inverted in Step 4 .	
	inverted in Step 4 .	
	inverted in Step 4 .	

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(c) The diag	Iram	shows the burette readings fro	om Steps 4 and 5 .	
		Burette reading from Step 4	Burette reading from Step 5	
		27 27 97 97 111 97 111 111 111		
Record t the expe			volume of hydrogen gas produ	uced in (2)
	Bur	rette reading in Step 4 / cm ³		
	Bur	rette reading in Step 5 / cm ³		
	Vol	ume of hydrogen gas / cm ³		
	e rea	ction equation and the mass o	gas at r.t.p., in cm³, using your a f magnesium (0.030g) used in	nswer (2)
		Mg(s) + 2HCl(aq) —	\rightarrow MgCl ₂ (aq) + H ₂ (g)	

 (e) The magnesium ribbon used in Step 1 contained a magnesium oxide impurity of up to 2% by mass. Explain whether this magnesium oxide impurity could account for any difference in your answer to (d) from the Data Book value of 24000 cm³. No calculation is required. 	(2)
 (f) Two readings were taken to measure the mass of magnesium used in the experiment. The uncertainty in each reading was 0.0025 g. (i) Calculate the percentage uncertainty in the mass of magnesium used in the experiment. 	(1)
 (ii) The student wanted to reduce the percentage uncertainty by using double the mass of magnesium. Give the reason why the experiment outlined in the procedure could not be conducted successfully using double the mass of magnesium. 	(1)
(Total for Question 2 = 12 ma	irks)

3 The concentration of a solution of barium hydroxide can b standard solution of ethanedioic acid.	e determined using a
(a) State what is meant by the term standard solution.	(1) DO NOT
	(1) dm ⁻³
	NTHIS
(b) Describe the preparation of 100.0 cm ³ of a 0.0500 mol c standard solution of ethanedioic acid, starting with cry ethanedioic acid dihydrate, H ₂ C ₂ O ₄ •2H ₂ O.	dm ⁻³ vstals of
Your answer should include details of the apparatus us $H_2C_2O_4$ •2 H_2O required.	sed and the mass of (6)
	DO NOT WRITE IN THIS ARE
	WRITE
	SARE
	O NOT
	WRITE
	O NOT WRITE IN THIS AREA

(c)	a c un	0 cm^3 of 0.0500 mol dm ⁻³ ethanedioic acid solution, H ₂ C ₂ O ₄ (aq), was added to onical flask and titrated with barium hydroxide solution, Ba(OH) ₂ (aq), of an known concentration. Name the piece of apparatus that should be used to add the ethanedioic acid solution, H ₂ C ₂ O ₄ (aq), to the conical flask.	(1)
	(ii)	The titration was carried out with a few drops of phenolphthalein indicator in the conical flask.	
		State the colour change observed at the end-point of the titration.	(2)
From		to	(-/
	(iii)	The formation of a white precipitate was observed during the titration.	
		Suggest the identity of the white precipitate, by name or formula.	(1)
	(iv)	The titration was repeated, giving a mean titre of 31.55 cm ³ .	
		Calculate the concentration of the barium hydroxide solution, $Ba(OH)_2(aq)$, in g dm⁻³ .	
		Ba(OH) ₂ and $H_2C_2O_4$ react in a 1:1 ratio.	
		Give your answer to an appropriate number of significant figures.	(3)

P 7 8 4 5 7 A 0 9 1 6

(Total for Question 3 = 14 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

							N	
	2						7	
							5	
							>	
	1	А	Ś	5	53	S,	١.	
		ч	Ľ					
		0		6		ę.		
2			S	Z	2			
5		Ч	P	5	Ş	Ŀ		
		đ	ь		2		S	
		2	ę		5	2		
Ś	2						7	
		6		ź	è	ń	S	
		3	C	2	2	2		
	2	9		5		í.	2	
	١,	7	2	Ζ		7	1	
		2	ø	ę	R,	è		
		4	Þ					
2		2	4	сi	ø	p	5	
		1				b.		
		á	È6					
						ŀ		
							2	
		4	2	é	2	ø	5	
		3	ę,	÷,	2	2		
		S	e)	ie	٠	₹	2	
	١.	2	-	=		sí	5	
		2	2	2	Z	3		
		e	-		2			
2		À		n	ы	₽		
		1	Z	2	Ζ	2		
		e	7	e	-	e		
			۷.					
ŝ,	2	ų	7	ę	7		7	
	N					F	S	
		а	38		20	ø		
	2	9	Þ	1			2	
	1	2	٦.	7		7	Ν.	
		N		5				
		Q	÷	e	÷	ę		
		À	í.	×.	í.	×.		
			Ζ.	5	2	۳,		
		4		6	à	6		
2		2		7				
5	2	١.				١.	7	
		6	è	ń	÷.			
		0		2	3			
ŝ	2	5		-	×ć.	i.	7	
	١,	7	7		5	7	1	
		à	4		Ľ	2		
		C	7	~	7	₹	2	
		A	2	μ	-	P	5	
		N	Ĺ	5	6	2		
		4	Þ		0			
2		2	÷	7		7		
		N						
		d	÷.	6				
			q	Z		ł		
5	2	h	ø	×,	7	5	2	
		Z	2	4	2	4	5	
		2			5			
		G	ø	R)	÷.	Ø.	2	
2	5	2	5	2	5	2	5	
		1			r			
		4	₽	ę		ų		
2		ð	6	2				
S	2	5	7	P	R	b.	2	
		4	a	1é	ø	۴		

(1)

This question is about the preparation of 2-chloro-2-methylpropane from 2-methylpropan-2-ol and concentrated hydrochloric acid.
$(CH_3)_3COH + HCl \rightarrow (CH_3)_3CCl + H_2O$
Procedure
Step 1 Pour 9.0 cm ³ of 2-methylpropan-2-ol into a separating funnel.
 Step 2 Add 20 cm³ of concentrated hydrochloric acid to the separating funnel, about 3 cm³ at a time. Stopper and invert the funnel after each addition.
Step 3 Leave the separating funnel for about 20 minutes, shaking it gently at regular intervals. Allow the layers to separate.
Step 4 Discard the aqueous layer before washing the organic layer repeatedly with sodium hydrogencarbonate solution, releasing the pressure after each addition.
Step 5 Transfer the organic layer into a small, dry conical flask and add three spatula measures of anhydrous sodium sulfate, swirling the flask after each addition.
Step 6 Decant the organic liquid into a pear-shaped flask and distil the 2-chloro-2-methylpropane into a pre-weighed conical flask.
(a) Give one reason, relating to safety, why the hydrochloric acid is added to the separating funnel 3 cm ³ at a time, and not all at once, in Step 2 .

.....

(b) Draw a labelled diagram of the separating funnel at the end of Step 3.

[Density of 2-chloro-2-methylpropane = $0.85 \,\mathrm{g \, cm^{-3}}$]

(2)

(c) Sodium hydrogencarbonate solution is added to remove acid impurities in Step 4.

Give the reason why a stronger alkali, such as sodium hydroxide solution, should **not** be used for this purpose.

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(d) State the role of the sodium sulfate in Step 5.

(1)

DO NOT WRITE IN THIS AREA

(f) Calculate the mass of 2-chloro-2-methylpropane produced in this procedure, if the percentage yield is 70%.

[Density of 2-methylpropan-2-ol = $0.78 \,\mathrm{g \, cm^{-3}}$]

 $[M_r \text{ of } 2\text{-methylpropan-2-ol} = 74.0]$

 $[M_r \text{ of } 2\text{-chloro-}2\text{-methylpropane} = 92.5]$

(4)

TOTAL FOR PAPER = 50 MARKS

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

BLANK PAGE

	0 (8) (18)	4.0 He	2	20.2	Ne	neon 10	39.9	Ar	argon 18	83.8	ĸ	krypton 36	131.3	Xe	54	[222]	Rn	radon 86		ted								
l	~		(17)	19.0	Ŀ	fluorine 9	35.5	ບ	chlorine 17	79.9	Br	bromine 35	126.9	-	53	[210]	At	astatine 85		seen repor		175	Ξ	lutetium 71	[257]	5	lawrencium 103	
	9		(16)	16.0	0	oxygen 8	32.1	S	sulfur 16	79.0	Se	selenium 34	127.6	Te	52	[209]	Po B	polonium 84		116 have the theory of the the		173	٩	ytterbium 70	[254]	No	nobelium 102	
	S		(15)	14.0	z	nitrogen 7	31.0	• ٦	phosphorus 15	74.9	As	arsenic 33	121.8	Sb	antimony 51	209.0	Bi	bismuth 83		tomic numbers 112-116 hav but not fully authenticated		169	Ш	thulium 69	[256]	ΡW	mendelevium 101	
	4		(14)	12.0	υ	carbon 6	28.1	Si	silicon 14	72.6	Ge	germanium 32	118.7	Sn	20 11	207.2	PP	lead 82		atomic nui but not f		167	Ъ	erbium 68	[253]	Fm	fermium 100	
	m		(13)	10.8	B	boron 5	27.0	AI	aluminium 13	69.7	Ga	gallium 31	114.8	Ē	49	204.4	F	thallium 81		Elements with atomic numbers 112-116 have been reported but not fully authenticated		165		holmium 67	[254]	Cf Es	einsteinium 99	
									(12)	65.4	zn	zinc 30	112.4	PC	cadmium 48	200.6	Hg	mercury 80				163	Ŋ	dysprosium 66	[251]	Շ	californium 98	
									(11)	63.5	C	copper 29	107.9	Ag	47	197.0	Au	gold 79	[272]	Rg	111	159		terbium 65	[245]	Ŗ	berkelium 97	
5									(01)	58.7	iŻ	nickel 28	106.4	Pd	pallaonum 46	195.1	£	platinum 78	[271]	Ds	110	157	BG	gadolinium 64	[247]	ш С	aunium 96	
									(6)	58.9	ვ	cobalt 27	102.9	Rh	45	192.2	<u>ب</u>	iridium 77	[268]	Mt	109	152	Eu	europium 63	[243]	Am	americium 95	
		1.0 H hydrogen	-						(8)	55.8	Fe	iron 26	101.1	Ru	44	190.2	S	osmium 76	[277]	Hs hassium	108	150	Sm	samarium 62	[242]	Pu	plutonium 94	
2			_						(2)	54.9	Mn	manganese 25	[98]	Ч	tecnnetium 43	186.2	Re	rhenium 75	[264]	Bh bohrium	107	[147]	Pm	promethium 61	[237]	ď	neptunium 93	
				mass	pol	umber			(9)	52.0	ა	Ę	95.9	Wo	42 43	183.8	3	tungsten 74	[266]	Sg seaborgium	106	144	PN	neodymium promethium 60 61	238		uranium 92	
			Key	relative atomic mass	atomic symbol	name atomic (proton) number			(2)	50.9	>	vanadium 23	92.9	qN	41	180.9	Ta	tantalum 73	[262]	Db dubnium		141	Pr	praseodymium 59	[231]	Pa	protactinium 91	
				relati	ato	atomic			(4)	47.9	ï	titanium 22	91.2	Zr	zirconium 40	178.5	۲f	hafnium 72	[261]	Rf rutherfordium	104	140	S	cerium 58	232		thorium 90	
									(3)	45.0	Sc	scandium 21	88.9	7	39 39	138.9	La*	lanthanum 57	[227]	Ac* actinium	_		S					
	2		(2)	9.0	Be	beryllium 4	24.3	Mg	magnesium 12	40.1	Ca	calcium 20	87.6	Sr	strontium 38	137.3	Ba	barium 56	[226]	Ra radium	88		 Lanthanide series 	* Actinide series				
	-		(1)	6.9	:-	lithium 3	23.0		sodium 11	39.1	¥	potassium 19	85.5	ß	37 37	132.9	ۍ ا	caesium 55	[223]	Fr francium	87		* Lanth	* Actini				