

Mark Scheme (Results)

January 2025

Pearson Edexcel International Advanced Level In Mechanics M2 (WME02) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

about how we can help you and your students at: www.pearson.com/uk

January 2025 Question Paper Log Number P76198A Publications Code WME02_01_2501_MS All the material in this publication is copyright © Pearson Education Ltd 2025

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for `knowing a method and

attempting to apply it', unless otherwise indicated.

- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected. If you are using the annotation facility on ePEN, indicate this action by `MR' in the body of the script.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Mechanics Marking

(NB specific mark schemes may sometimes override these general principles)

- Rules for M marks:
 - correct no. of terms
 - dimensionally correct
 - all terms that need resolving (i.e. multiplied by cos or sin) are resolved.
- Omission or extra g in a resolution is an accuracy error not method error.
- Omission of mass from a resolution is a method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- DM indicates a dependent method mark, i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of g = 9.8 should be given to 2 or 3 SF.
- Use of g = 9.81 should be penalised once per (complete) question.
 - N.B. Over-accuracy or under-accuracy of correct answers should only be penalised *once* per complete question. However, premature approximation should be penalised every time it occurs.
- Marks must be entered in the same order as they appear on the mark scheme.
- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c)...then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft

Mechanics Abbreviations

M(A)	Taking moments about A
N2L	Newton's Second Law (Equation of Motion)
NEL	Newton's Experimental Law (Newton's Law of Impact)
HL	Hooke's Law
SHM	Simple harmonic motion
PCLM	Principle of conservation of linear momentum
RHS	Right hand side
LHS	Left hand side

1.	Gain in GPE = $2.6g \times 20 \sin \alpha \left(= 2.6g \times 20 \times \frac{5}{13} \right)$	M1	Or equivalent. Condone sine / cosine confusion
	$F_{\max} = \frac{1}{5} \times 2.6g \cos \alpha \left(= \frac{1}{5} \times 2.6g \times \frac{12}{13} \right)$	M1	Or equivalent. Condone sine / cosine confusion
	Work done against friction = $20F_{max}$	M1	Follow their F_{max} . Must have an expression for F_{max} . Independent of the preceding M1
	Total work done = $2.6g \times 20 \sin \alpha + 4 \times 2.6g \cos \alpha$	DM1	Dependent on preceding M marks Must be adding the two relevant expressions
	= 290(J)	A1	2 sf or 3 sf Do not ISW
			NB: Omission of g should be marked as an accuracy error
		[5] (5)	

2a	NB If they use $a = 0$ then max score is $1/7$	/ (3 rd M	1 only)
	Equation of motion for van + trailer:	M1	First equation: Dimensionally correct. Need all terms. In F or P . Condone sign errors.
	F - (500 + 200) = (900 + 300)a	A1	Correct unsimplified equation
	Equation of motion for the trailer	M1	Second equation: Dimensionally correct. Need all terms. In <i>F</i> or <i>P</i> . Condone sign errors. Correct mass
	T - 200 = 300a	A1	Correct unsimplified equation. Follow their <i>a</i> .
	Equation of motion for van $F - T - 500 = 900a$		There are 3 possible equations. They need 2 of them. M1A1 for each correct unsimplified equation.
	$F = \frac{18000}{12} (=1500)$	M1	Use of $P = Fv$ Need to have substituted relevant values Condone use of 18 in place of 18000 (or incorrect number of zeros)
	Solve for <i>T</i>	DM1	Dependent on previous 3 M marks
	T = 400	A1	Correct only
			NB: Inclusion of g should be
			marked as an accuracy error
		[7]	
2b	Equation of motion for van + trailer	M1	Dimensionally correct. Need all terms. Condone sign errors. Condone sine / cosine confusion Alt: Obtains separate equations for van and trailer and eliminates <i>T</i>
	$F - (200 + 500) - (300 + 900)g\sin\alpha = 0$ $\left(\frac{18000}{v} = 700 + \frac{1200g}{15}\right)$	A1 A1	Unsimplified equation in F or v with at most one error. Consistent trig confusion is one error. Consistent sign error is one error. Missing g is one error. Correct unsimplified equation in v Allow with trig value not substituted
	v = 12 or v = 12.1	A1	2 sf or 3 sf
		[4]	
		(11)	

3a	Use $\mathbf{v} = \frac{\mathbf{d}\mathbf{r}}{\mathbf{d}t}$	M1	Differentiate the vector. At least 3 powers going down
	$\mathbf{v} = \left(3 - \left(t + 1\right)^{-\frac{1}{2}}\right)\mathbf{i} + \left(2t - 6\right)\mathbf{j}$	A1 A1	one component correct both components correct.
	$(2t-6) = 0 \Longrightarrow t = 3$	M1	Equate their j component of velocity to zero and solve for <i>t</i> Must have seen a clear attempt to differentiate
	Speed = $2.5(ms^{-1})$ or equivalent	A1	Must be a scalar. A0 for 2.5i
		[5]	
3b	Use $\mathbf{a} = \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}$	M1	Differentiate the vector. Powers going down and at least one constant goes to zero.
	$\mathbf{a} = \frac{1}{2} (t+1)^{-\frac{3}{2}} \mathbf{i} + 2\mathbf{j}$	A1	Or equivalent correct expression Allow if correct derivative implied by correct substitution
	$\left(\mathbf{a} = \frac{4}{\sqrt{125}}\mathbf{i} + 2\mathbf{j}\right) \left \mathbf{a}\right = \sqrt{\frac{16}{125} + 2^2}$	DM1	Correct use of Pythagoras Dependent on the preceding M1
	$= 2.03 \left(m s^{-2} \right)$ or better	A1	$\frac{2\sqrt{645}}{25}$ or 2.0317
		[4]	
3c	For $\mathbf{r} = 0, (3t + 2 - 2\sqrt{t+1}) = 0$ and	M1	No need to consider $t = 0$ as this is
	$(t^2 - 6t) = 0$		excluded in the Q
		A1	Clear explanation of the given result with no errors seen.
	$(t^2 - 6t) = 0$ $t \neq 0 \Longrightarrow t = 6$ but $(3 \times 6 + 2 - 2\sqrt{6+1}) \neq 0$ Hence no solution and does not return	A1	Clear explanation of the given
	$(t^{2} - 6t) = 0$ $t \neq 0 \Longrightarrow t = 6 \text{ but } (3 \times 6 + 2 - 2\sqrt{6 + 1}) \neq 0$	f the ve clusion	Clear explanation of the given result with no errors seen. e.g. $(3t+2-2\sqrt{t+1})=0$ $\Rightarrow 9t^2+8t=0$ has no solution for t > 0 (need something to indicate impossible) locity is always > 2, so no return with no errors seen and sufficient
	$(t^2 - 6t) = 0$ $t \neq 0 \Rightarrow t = 6$ but $(3 \times 6 + 2 - 2\sqrt{6+1}) \neq 0$ Hence no solution and does not return There will be other alternatives e.g. Show that the horizontal component of M1 for correct strategy A1 for correct con- justification. Conclusion needs to be clear	of the ve clusion t but doe	Clear explanation of the given result with no errors seen. e.g. $(3t+2-2\sqrt{t+1})=0$ $\Rightarrow 9t^2+8t=0$ has no solution for t > 0 (need something to indicate impossible) locity is always > 2, so no return with no errors seen and sufficient es not need to be the exact wording
	$(t^2 - 6t) = 0$ $t \neq 0 \Rightarrow t = 6$ but $(3 \times 6 + 2 - 2\sqrt{6+1}) \neq 0$ Hence no solution and does not return There will be other alternatives e.g. Show that the horizontal component of M1 for correct strategy A1 for correct con justification. Conclusion needs to be clean from the question. An argument dependent solely on acceleration	of the ve clusion t but doe	Clear explanation of the given result with no errors seen. e.g. $(3t+2-2\sqrt{t+1})=0$ $\Rightarrow 9t^2+8t=0$ has no solution for t > 0 (need something to indicate impossible) locity is always > 2, so no return with no errors seen and sufficient es not need to be the exact wording
	$(t^2 - 6t) = 0$ $t \neq 0 \Rightarrow t = 6$ but $(3 \times 6 + 2 - 2\sqrt{6+1}) \neq 0$ Hence no solution and does not return There will be other alternatives e.g. Show that the horizontal component of M1 for correct strategy A1 for correct con justification. Conclusion needs to be clean from the question. An argument dependent solely on acceleration	f the ve clusion but doe	Clear explanation of the given result with no errors seen. e.g. $(3t+2-2\sqrt{t+1})=0$ $\Rightarrow 9t^2+8t=0$ has no solution for t > 0 (need something to indicate impossible) locity is always > 2, so no return with no errors seen and sufficient es not need to be the exact wording

4	NB: For the whole of this question, confusion between horizontal and vertical is not			
	a misread			
4a	<i>x</i> = 3	B1	Seen or implied anywhere Do not accept $x = 3i$	
	Use of $v^2 = u^2 + 2as$	M1	Complete method using <i>suvat</i> or energy to form an equation in <i>y</i> . Condone sign errors	
	$15^2 = y^2 + 2 \times g \times 10$	A1	Correct unsimplified equation	
	$y^2 = 29, y = 5.4$ or 5.39	A1	2 sf or 3 sf. If final answer is $y = 5.4\mathbf{j}$ do not penalise inclusion of a vector a second time.	
			SC allow $4/4$ for $x\mathbf{i} + y\mathbf{j} = 3\mathbf{i} + 5.4\mathbf{j}$	
4		[4]		
4a alt	<i>x</i> = 3	B1	Seen or implied anywhere Do not accept $x = 3i$	
	Equation for conservation of energy	M1	Require all 3 terms and no extras. Dimensionally correct. Condone sign errors. Must include <i>m</i>	
	$\frac{1}{2}m \times (3^2 + 15^2) = mg \times 10 + \frac{1}{2}m(x^2 + y^2)$	A1	Correct unsimplified equation – any equivalent form	
	$y^2 = 29, y = 5.4$ or 5.39	A1	2 sf or 3 sf. If final answer is $y = 5.4j$ do not penalise inclusion of a vector a second time.	
		[4]		
4b	Time from <i>B</i> to <i>C</i> :	M1	Complete method using <i>suvat</i> and their vertical speed. Condone sign errors	
	-15 = 5.39 - gt ($t = 2.08$)	Alft	Correct equation in <i>t</i> only	
			e.g. $10 = 15t - \frac{1}{2}gt^2$	
			ft on their 5.39 if used	
	Horizontal distance	DM1	Complete method using <i>suvat</i> and	
	$= 3t (= their \ x \times their \ t)$		their x value.	
	× ,		Dependent on preceding M1	
	(AC =) 6.2(m) or 6.24(m)	A1	2 sf or 3 sf	
			NB Penalise over-accuracy only	
		[4]	once per question	
		141		
		(8)		

5a	Impulse-momentum equation.	M1	Dimensionally correct. Subtraction seen or implied. Condone subtraction in wrong order.
	(±I=)	Al	Or equivalent
	$(\pm \mathbf{i} -)$ 2($\lambda \mathbf{i} + \lambda \mathbf{j}$)-2(4 \mathbf{i})(=(2 λ -8) \mathbf{i} +2 $\lambda \mathbf{j}$)	111	Ignore $4\sqrt{10}$ if seen here
	$(\mathbf{I} ^2 =)160 = (2\lambda - 8)^2 + (2\lambda)^2$	DM1	Use of Pythagoras to obtain an equation in λ Dependent on the previous M1
	$\left(\Rightarrow 0 = \lambda^2 - 4\lambda - 12\right)$	A1	Or any correct unsimplified equation in λ
	$\Rightarrow (\lambda =) 6$	A1	Correct only.
	SC Allow 5/5 in (a) if working with -I. The	y will lo	ose marks later.
		[5]	
5a alt	Form vector triangle for impulse or for momentum.	M1	Dimensionally correct. Must be subtracting. Condone subtraction in wrong order.
	Correct triangle	A1	$4\sqrt{10}$ e.g.
	$160 = 64 + 8\lambda^2 - 32\sqrt{2}\lambda \times \frac{1}{\sqrt{2}}$	DM1	Use of Cosine Rule to obtain an equation in λ Dependent on the previous M1
	$\Rightarrow 0 = 8\lambda^2 - 32\lambda - 96$	A1	Or equivalent equation in λ
	$\Rightarrow (\lambda =) 6$	A1	Correct only
		[5]	
5b	$\mathbf{I} = 4\mathbf{i} + 12\mathbf{j}$	B1ft	Follow their λ $(\mathbf{I} = (2\lambda - 8)\mathbf{i} + 2\lambda\mathbf{j})$ B0 for a column vector. B0 if still in terms of lambda. Ignore second solution for negative lambda if seen
5.	12 1/	[1] M1	Compatives of this or realized
5c	$\tan \theta^{\circ} = \frac{12}{4} \text{ or } \cos \theta^{\circ} = \frac{16}{4 \times 4\sqrt{10}}$	M1	Correct use of trig or scalar product for the required angle with <i>their</i> I provided both components are non-zero Do not allow for the reciprocal
	$\theta = 72$	A1	72 or better (71.56505) from correct work only Ignore second solution for negative lambda if seen
I		1 1-1	1

6a		rectangle	triangle	lamina	11	
Jua	area	$8ka^2$	$3ka^2$	$5ka^2$	B1	Correct area ratio seen or implied
	From AD	4 <i>a</i>	2a	d d	B1	Correct distances from <i>AD</i> or a
		Ĩŭ	24	u		parallel axis seen or implied.
						Condone if <i>d</i> not used
	Moments	about AD			M1	Or a parallel axis. Need all terms.
						Dimensionally consistent.
						Condone sign error.
	$8ka^2 \times 4a$ $26a = 5d$	$-3ka^2 \times 2a$	$a = 5ka^2 \times a^2$	d	A1	Correct unsimplified equation
	26a - 5d	$\rightarrow d - \frac{26}{2}$	a *		A1*	Obtain given answer from correct
	20u - 3u	$\rightarrow u = 5$	u			working. Must obtain <i>d</i> =
					[5]	
6b	Moments	about <i>PS</i>			M1	Or a parallel axis. Need all terms.
						Dimensionally consistent.
						Must be using the 3 correctly with
						areas, so $5ka^2$, $15ka^2$, $15ka^2$ is M0.
						Allow a slip on one value.
						Condone sign error.
	$5k \times \frac{26}{5}a + 2 \times 3 \times 4k \times 4a = (5k + 24k)\overline{x}$				A1	Unsimplified equation with a slip
	5		()	A 1	on at most one value
					A1	Correct unsimplified equation. Allow with common factors
						cancelled
	$\overline{x} = \frac{122}{29}a$				A1	Correct only
	$\overline{y} = ka$				B1	Distance from PQ seen or implied
	$\tan \theta = \frac{122}{29k}$				A1ft	Follow their \overline{x} . $\left(\frac{\overline{x}}{ka}\right)$
					[6]	
					(11)	

7a	$ \begin{array}{c} D \\ 0 \\ 8a \\ V \\ 0 \\ 4a \\ 12W \\ H \end{array} $		NB: This is a "show that" question. The working must give a clear indication of where the lengths in the moments equation come from. Check the diagram. Could be resolving or using similar triangles. Might have resorted to using a calculator to evaluate the angles. Each term should include a trig ratio	
	Moments about A	M1	Or an alternative complete method to form an equation in T . Condone sign errors and sine / cosine confusion. Need all terms and dimensionally consistent. (accept with no a)	
	$12W \times 4a\sin\theta + W \times 8a\sin\theta = 5a \times T\sin 2\theta$	A1	Unsimplified equation with at most	
	or $48aW\sin\theta + 8aW\sin\theta = 8aT\sin\theta$		one error	
	$48aW\sin\theta + 8aW\sin\theta$ or	A1	Correct unsimplified equation	
	$= 3aT\cos\theta + 4aT\sin\theta$		Allow A1A0 if angle <i>DCB</i> used	
	$\begin{pmatrix} 10 & 3 \\ 10 & 0 \end{pmatrix}$		and not in terms of θ If no trig in the moments equation	
	$\left(48\times\frac{3}{5}W+8\times\frac{3}{5}W=T\times10\times\frac{3}{5}\times\frac{4}{5}\right)$		then $M0 - given answer, so no$	
			BOD	
	$56W = 8T \Longrightarrow T = 7W *$	A1*	Obtain given answer from correct working	
		[4]	U	
7b	First equation e.g. resolve horizontally	M1	Condone sign errors and sine / cosine confusion	
	$(\pm)H = T\sin\theta \left(=\frac{21}{5}W\right)$	A1	Correct unsimplified equation Alt: resolving parallel to the rod: $13W\cos\theta = T\cos 2\theta + R\cos\alpha$	
	Second equation e.g. resolve vertically	M1	Condone sign errors and sine / cosine confusion	
	$(\pm)V + T\cos\theta = 13W\left(V = \frac{37}{5}W\right)$	A1	Correct unsimplified equation Alt resolving perpendicular to the rod: $13W \sin \theta = R \sin \alpha + T \sin 2\theta$	
	Another alternative is to use a second mor		-	
	e.g M(C): $5a \times R \sin \alpha + W \times 3a \sin \theta = 12W$	$W \times a \sin \theta$	$h \theta$	
	$M(B): R\sin\alpha \times 8a + T\sin 2\theta \times 3a = 12W \times 4a\sin\theta$			
	$\alpha^{\circ} = \tan^{-1}\frac{3}{4} - \tan^{-1}\frac{H}{V}$	DM1	Complete method to obtain α Dependent on the two preceding M marks	
	or $\tan^{-1}\frac{V}{H} - \tan^{-1}\frac{4}{3}$	DIVII	Alt gives $R \sin \alpha = \frac{27}{25}W, R \cos \alpha = \frac{211}{25}$	
	$\alpha = 7.3$	A1	7.29205 or better. Mark 0.127 radians as a misread	
<u> </u>		[6]		
1				

8a	6u u		
	P m Q km		
	$\xrightarrow{2v}$ $\xrightarrow{3v}$		
	Use of impact law	M1	Used the right way round. Condone sign errors
	$\frac{3v-2v}{6u+u} = \frac{1}{3}$	A1	Correct unsimplified equation e.g. If see just $\frac{v}{5u} = \frac{1}{3}$ assume a sign slip and allow M1A0A0
	$v = \frac{7}{3}u$	A1	Correct only. CSO
		[3]	
8b	Use of CLM (or equal and opposite impulses)	M1	Dimensionally consistent. Need all terms. Condone sign errors. Condone one slip in matching speeds and masses. Condone consistent omission of <i>m</i> .
	6mu - kmu = 3kmv + 2mv or 6u - ku = 3kv + 2v	A1	Correct unsimplified equation Allow the marks if CLM stated correctly in (a) and used here.
	$6-k = 3k \times \frac{7}{3} + 2 \times \frac{7}{3}, 8k = \frac{4}{3}, k = \frac{1}{6}$	A1	Correct only from correct work only
		[3]	
8c	This method looks at the total time betwee	en the tv	vo collisions between P and Q
	Speed of Q after rebound = $f \times 3v (= f \times 7u)$	B1ft	Seen or implied ft is for correct use of their v
	t_P between collisions = $\frac{6d}{7 \times 2v} \left(= \frac{3d}{7v} = \frac{9d}{49u} \right)$	B1ft	Seen or implied For <i>P</i> distance $6d/7$ at $2v$ ft is for correct use of their <i>v</i>
	t_Q between collisions $= \frac{d}{3v} + \frac{d}{7 \times 3fv}$ $\left(= \frac{d}{7u} + \frac{d}{49fu}\right)$	M1	For Q distance d at $3v$ and distance $d/7$ at $3vf$
	$t_{Q} = t_{P} \Longrightarrow \frac{3d}{7v} = \frac{d}{3v} + \frac{d}{21fv}$	DM1	Equate times and solve for <i>f</i> Dependent on preceding M1
	$t_{Q} = t_{P} \Longrightarrow \frac{3d}{7v} = \frac{d}{3v} + \frac{d}{21fv}$ $\frac{3}{7} = \frac{1}{3} + \frac{1}{21f}, \frac{2}{21} = \frac{1}{21f}, f = \frac{1}{2}$	A1	Correct only from correct working
		[5]	
	See over for alternatives		

8c	This method looks at the time between the co	ollision	between Ω and the wall and the
alt	second collision between P and Q		con con con a una mo wan una mo
	Speed of Q after rebound		Seen or implied
	$= f \times 3v (= f \times 7u)$	B1ft	ft is for correct use of their v
	Distance apart when Q hits wall		Seen or implied
		B1ft	ft is for correct use of their v
	$= d - \frac{14u}{3} \times \frac{d}{7u} \left(= \frac{d}{3} \right)$	Diff	Distance moved by Q – distance moved by P
	t_p for extra distance		Additional time to second
	4d 14u (4d)	M1	collision = extra distance
	$=\frac{4d}{21}\div\frac{14u}{3}\left(=\frac{4d}{21}\div2v\right)$		divided by speed of P
	4d $14u$ d		Equate times to second collision
	$t_Q = t_P \Longrightarrow \frac{4d}{21} \div \frac{14u}{3} = \frac{d}{7} \div 7uf$	DM1	and solve for <i>f</i>
			Dependent on preceding M1
	$\frac{12}{3 \times 2 \times 49} = \frac{1}{49f}, f = \frac{1}{2}$	A1	Correct only from correct
	$3 \times 2 \times 49$ $49f$ 2		working
		[5]	
8c	This method looks at how far Q travels after	the rebo	bund
alt	Speed of O after rehound		~
	Speed of Q after rebound f(x) = f(x) f(x) f(x)	B1ft	Seen or implied
	$= f \times 3v \left(= f \times 7u\right)$	510	ft is for correct use of their v
	t_P between collisions $=\frac{6d}{7 \times 2v} \left(=\frac{3d}{7v}\right)$	B1ft	
	Distance travelled by Q if $f = 1$	M1	
	3d 9		
	$=\frac{3d}{7v}\times 3v=\frac{9}{7}d$		
	$f = \frac{\text{actual distance after rebound}}{9}$	M1	This is equivalent to
	$f = \frac{9}{\frac{9}{7}d - d}$		$\frac{3d}{2} \times 3v = \frac{d}{2} \times 3v + \frac{d}{21.6} \times 3v$
	$\frac{1}{7}a - a$		$\frac{7v}{7v} \times \frac{3v}{3v} = \frac{3v}{3v} \times \frac{3v}{21} + \frac{1}{21} + \frac{3v}{21} + \frac{3v}$
			or $\frac{9d}{7} = d + \frac{d}{7f}$
			or $\frac{1}{7} = a + \frac{1}{7f}$
	1	A1	Correct only from correct
	$=\frac{1}{2}$		working
		[5]	
8c	This method looks at distances		
alt			
	Speed of Q after rebound	B1ft	Seen or implied
	$= f \times 3v \left(= f \times 7u\right)$		ft is for correct use of their <i>v</i>
	If t_1 is the time for Q to the wall and t_2 is	B1ft	
	the time between wall and second collision		
	distance travelled by <i>P</i> is $(t_1 + t_2)\frac{14}{3}u$		
	3		

$(t_1 + t_2)\frac{14}{3}u = \frac{6}{7} \times 7ut_1$	M1	Equate distances for P and Q
Use $\frac{d}{7} = 7uf \times t_2$ and solve	M1	
Obtain $f = \frac{1}{2}$	A1	Correct only from correct working
	[5]	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom