

Mark Scheme (Results)

January 2025

Pearson Edexcel International Advanced Level In Further Pure Mathematics F1 (WFM01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2025

Question Paper Log Number P76192A

Publications Code WFM01_01_2501_MS

All the material in this publication is copyright

© Pearson Education Ltd 2025

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded.
 Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: Method marks are awarded for 'knowing a method and completing an attempt to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M)
 marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
- 3. Marks should not be subdivided.

Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- ft follow through
- cao correct answer only
- cso correct solution only. There must be no clear errors in this part of the question to obtain this mark
- isw ignore subsequent working
- · awrt answers which round to
- SC: special case
- oe or equivalent
- dM dependent method mark
- dp decimal places
- sf significant figures
- * The answer is given on the paper apply cso

- 4. All A marks are 'correct answer only' (cao), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
- If all but one attempt is crossed out, mark the attempt which is NOT crossed out provided it is not cursory.
- If either all attempts are crossed out or none are crossed out, mark all attempts and score for the best attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer unless the mark scheme indicates otherwise.
 - 8. Mark question parts separately unless the mark scheme indicates otherwise.

<u>Usual rules for the method mark for solving a 3 term quadratic:</u>
(Note: There may be schemes where the below does not apply)

If no method is shown then one root must be obtained that is consistent with their equation.

1. Factorisation

$$(x^2+bx+c)=(x+p)(x+q)$$
, where $|pq|=|c|$, leading to $x=...$

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Complete attempt to use the correct formula with values for a, b and c leading to x = ... (may be unsimplified).

3. Completing the square (where a = 1; if $a \ne 1$ must divide by a first but allow equivalent work e.g., if a is a perfect square)

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

(a)	$\mathbf{P} = \begin{pmatrix} p-1 \\ -3 \end{pmatrix}$ $\left\{ \det \mathbf{P} = \right\} \ p(p-1)$	$\begin{pmatrix} p+1 \\ p \end{pmatrix}$	
(a)	$\left\{\det\mathbf{P}=\right\} p(p-1)$		
	() 1 (1	(-3)(p+1)	
	Award for any correct e	/ (/ (- /	3.54
	If expanded immediately allow one sign error	-	M1
	can be implied by $p^2 \pm 4p + 3$ provide	ed this has not come from $ad + bc$	
	$p^2 + 2p + 3$	Correct 3TQ. Terms in any order. Ignore "=0"	A1
(b)	If (a) is incorrect, only the M mark is available with a 3TQ [from (a) or reattempt	. ,	(2)
	The M mark requires doing enough work so then needed, e.g., correct numerical expression formula, correct completion of the square differenti The A mark always requires an non-singular/not singular/isn't/can Do not accept just	n (or value) for determinant, correct use of e, correct vertex (stated or via graph or ation) appropriate explanation and of the singular or "has inverse".	
	$p^2 + 2p + 3$ $\neq 0$ or > 0 or $= 2$ (not > 2) of Might see $(p+1)^2 = -2$ or $p+1 = 1$ followed by not real/possible/co M1: $p^2 + 2p$	solution or det $\mathbf{P} \neq 0$, so non-singular for the discriminant. Allow comparison of $4ac$ and conclusion. Final: $\frac{-2 \pm \sqrt{-8}}{2} = -1 \pm \sqrt{2} \mathbf{i}$ Imaginary) or no solution or det $\mathbf{P} \neq 0$, so gular all expression for p and conclusion. Seleting the square: $3 = (p+1)^2 + 2$ For min. value = 2 so non-singular $\{\pm\} \sqrt{-2} \text{ or } \{\pm\} \sqrt{2} \mathbf{i} \text{ or } p = -1\{\pm\} \sqrt{2} \mathbf{i}$	M1 A1
	Cases cont	tinue overleaf	

Question Number	Scheme	Notes	Marks
1(b)	4. Differe	entiation:	
cont.	$\frac{\mathrm{d}y}{\mathrm{d}p} = 0 \Rightarrow 2p + 2 = 0 \Rightarrow$	$p = -1 \Rightarrow p^2 + 2p + 3 = 2$	
	M1: For A1: Full explanation 5. Vertex j	Minimum or "U-shape" or $a > 0$ or appropriate sketch, so non-singular M1: For -1 and 2 A1: Full explanation and conclusion. 5. Vertex just stated: Vertex is at $(-1, 2)$	
	"U-shape" or $a > 0$ or approp	oriate sketch, so non-singular	
	M1: Correct vertex. If preceded by $p^2 + 2p = 1$	$+3 = (p+1)^2 + 2$ award at that point for CTS	
	A1: Full explanation		
			(2)
(c)	$\mathbf{P} = \begin{pmatrix} p-1 & p+1 \\ -3 & p \end{pmatrix} \Rightarrow \\ \left\{ \mathbf{P}^{-1} = \right\} \frac{1}{"p^2 + 2p + 3"} \begin{pmatrix} p & -p-1 \\ 3 & p-1 \end{pmatrix}$ $\mathbf{or} \begin{pmatrix} \frac{p}{"p^2 + 2p + 3"} & \frac{-p-1}{"p^2 + 2p + 3"} \\ \frac{3}{"p^2 + 2p + 3"} & \frac{p-1}{"p^2 + 2p + 3"} \end{pmatrix}$	M1: $\frac{1}{"p^2 + 2p + 3"} \times (a \text{ changed } 2 \times 2 \text{ P})$ (their changed P must not be or become constant) OR sight of Adj(P) i.e. $\begin{pmatrix} p & -p - 1 \\ 3 & p - 1 \end{pmatrix}$ oe which may be labelled as \mathbf{P}^{-1} A1ft: Correct inverse ft their det P [from part (a) or reattempted] provided it is (and remains) a function of p and accept det P unsimplified. Condone if det P clearly miscopied or rewritten incorrectly e.g., $(p+1)^2 - 2$ Allow $-1(p+1)$ for $-p-1$ but A0 if $-(-3)$ for 3 Isw when a correct or correct ft answer is seen unless a value for p is substituted	M1A1ft
			(2)
			Total 6

Question Number	Scheme	Notes	Marks
2(a)	$f(0.3) = \{3.4563\}$ $f(0.4) = \{4.0615\}$	Attempts both $f(0.3)$ and $f(0.4)$ and achieves a positive value for $f(0.3)$ and a a negative value for $f(0.4)$	M1
	Sign change oe and $\{f(x) \text{ is}\}$ continuous \Rightarrow root $\{\text{between } x = 0.3 \text{ and } x = 0.4\}$	Both $f(0.3)$ = awrt 3.5 or 3.4 (truncated) & $f(0.4)$ = awrt -4.1 or -4.0 or -4 (truncated), sign change oe, continuity and a minimal conclusion e.g., "root" or "shown". A graph alone is insufficient. Allow "positive, negative" or $f(0.3) > 0$, $f(0.4) < 0$ or $f(0.3)f(0.4) < 0$ for "sign change".	A1
a >			(2)
(b)	$f(x) = x^{2} - \frac{7x - 4\sqrt{x}}{x^{3}} = x^{2} - 7x^{-2} + 4x^{-2.5}$ $f'(x) = 2x + 14x^{-3} - 10x^{-3.5}$	Indices must be processed for any marks M1: For $x^n ox^{n-1}$ at least once A1: 2 correct terms simplified or unsimplified A1: All correct simplified or unsimplified	M1A1A1
İ	If quotient/product rule used award I	•	
		nese cases must imply 2 correct terms for the	
		mark.	
		ule leads to	
	$2x - \frac{x^3 \left(7 - 2x^{-\frac{1}{2}}\right) - 3x^2 \left(7x - 4x^{\frac{1}{2}}\right)}{2} = 2x - \frac{7}{2}$	$\frac{2x^3 - 2x^{\frac{5}{2}} - 21x^3 + 12x^{\frac{5}{2}}}{x^6} = 2x - \frac{-14x^3 + 10x^{\frac{5}{2}}}{x^6}$	
	$\left(x^{3}\right)^{2}$	x^{0} x^{0}	
	Product rule on x^{-3}	$(7x-4\sqrt{x})$ leads to	
	$2x - \left[x^{-3}\left(7 - 2x^{-\frac{1}{2}}\right) + \left(-3x^{-4}\right)\left(7x - 4x^{\frac{1}{2}}\right)\right]$	$\left[2x - \left[7x^{-3} - 2x^{-\frac{7}{2}} - 21x^{-3} + 12x^{-\frac{7}{2}} \right] \right]$	
()			(3)
(c)	$x_1 = 0.3 - \frac{f(0.3)}{f'(0.3)} = \dots$	Obtains a value from an attempt to apply the correct Newton-Raphson formula. Allow slips with substitution/miscopying and may be using an incorrectly simplified $f(x)$. Implied by awrt 0.32 (0.322003)	
	$ = 0.3 - \frac{0.3^2 - \frac{7(0.3) - 4\sqrt{0.3}}{0.3^3}}{"2(0.3) + 14(0.3)^{-3} - 10(0.3)^{-3.5}}" $	even if f'(x) is incorrect. Not implied by real root which is 0.33 or 0.328 (0.3276079) If not implied and no substitution is seen accept as minimum	M1
	$\left\{ = 0.3 - \frac{3.456304816}{-157.0821698} = 0.3 + 0.02200316 = \right\}$	"0.3 - $\frac{f(0.3)}{f'(0.3)}$ =" but " $x_0 - \frac{f(x_0)}{f'(x_0)}$ ="	
		is only acceptable if $x_0 = 0.3$ is seen.	
		If only a value is seen it must round to 0.32 For awrt 0.322. Must be decimal	
	0.322	Ignore further iterations " α = " is not required - just look for awrt	A1
		0.322 regardless of how it is labelled	
			(2)

$\beta = \frac{\text{"0.590438"}}{\text{"0.590438"} - (\text{"-0.37613"})}$ $\beta = \frac{1.3(\text{"0.590438"}) - 1.5(\text{"-0.37613"})}{\text{"0.590438"} - \text{"-0.37613"}}$ $\Rightarrow \beta =$ May use $\frac{af(b) - bf(a)}{f(b) - f(a)}$ oe. Allow e.g., x for β . If their variable denotes e.g., the distance between (1.3, 0) and $(\beta, 0)$ then 1.3 must be added later. Implied by awrt 1.378 (1.3778285). Not by real root of 1.377 (1.376561)	Marks
Must be using the correct interval.	M1
For awrt 1.378. Must be decimal. Ignore further iterations " β = " is not required - just look for awrt 1.378 regardless of how it is labelled	A1
Alternative via line equation: $y - ("-0.37613") = \frac{"0.590438" - ("-0.37613")}{1.5-1.3} (x-1.3) \text{ then } y = 0 \Rightarrow x =$ M1 for a correct equation with their f (1.3) and f (1.5), setting $y = 0$ and solving for x . May use (1.5, "0.590438") as the point. Could also see equivalent attempts using $y = mx + c \text{ (finds } c \text{ from a correct equation, puts } y = 0 \text{ and solves)}$	
	(2) otal 9

Question Number	Scheme	Notes	Marks
3	Score B0 in (a) if the roots $\frac{1 \pm \sqrt{14} i}{3}$ are seen	and then answers are just written down. The	
	three subsequent method marks require use of 000001	of the relevant identities. If not, a maximum 0 is likely.	
(a)	$3x^{2} - 2x + 5 = 0 \Rightarrow$ $\alpha + \beta = \frac{2}{3}, \alpha\beta = \frac{5}{3}$	Both values correct. Consider in order presented if not labelled	B1
			(1)
(b)	$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \left(\frac{2}{3}\right)^2 - 2\left(\frac{5}{3}\right) = \dots$	Uses correct identity with their sum and product to obtain a value for $\alpha^2 + \beta^2$	M1
	$=-\frac{26}{9}$	Correct value from correct sum and product	A1
			(2)
(c)	The work for the first two marks m	•	
	expression		
		Obtains a value for the new sum from a	
		correct numerical expression (which could	
	$1 - 1 - \alpha + \beta - 2 - \frac{2}{3}$ (16)	be implied) with their sum and product.	1st
	$\alpha + \frac{1}{\alpha} + \beta + \frac{1}{\beta} = \alpha + \beta + \frac{\alpha + \beta}{\alpha \beta} = \frac{2}{3} + \frac{2}{3} = \dots = \frac{16}{15}$	Allow use of equivalent numerical	M1
	, , , , , ,	expressions following use of e.g. $(x_1, y_1, y_2, y_3, y_4, y_4, y_5, y_5, y_6, y_6, y_6, y_6, y_6, y_6, y_6, y_6$	(Sum)
		$\alpha\beta(\alpha+\beta)+\alpha+\beta$	
		lphaeta	
		Obtains a value for the new product via a	
		correct numerical expression (which could	
	(1)(1) (1) (1) (1) (1) (1)	be implied) with their sum, product and	
	$\left(\alpha + \frac{1}{\alpha}\right)\left(\beta + \frac{1}{\beta}\right) = \alpha\beta + \frac{\alpha}{\beta} + \frac{\beta}{\alpha} + \frac{1}{\alpha\beta} = \alpha\beta + \frac{\alpha^2 + \beta^2}{\alpha\beta} + \frac{1}{\alpha\beta}$	answer to (b) which may have been	2nd
		reattempted.	M1
	$= "\frac{5}{3}" + \frac{"-\frac{26}{9}"}{"\frac{5}{3}"} + \frac{1}{"\frac{5}{3}"} = \dots \left(\frac{8}{15}\right)$	Allow use of equivalent numerical expressions following use of e.g	(Product)
		$(\alpha\beta)^2 + \alpha^2 + \beta^2 + 1$	
		$\frac{\left(\alpha\beta\right)^2+\alpha^2+\beta^2+1}{\alpha\beta}$	
		Correctly applies x^2 – (their new sum) x +	
	2 "16" "8" (2)	their new product with values to obtain a	3.54
	$x^2 - \frac{16}{15}x + \frac{8}{15} = \{0\}$	3TQ. Not dependent. Accept appropriate	M1
		values for p , q and r for this mark.	
		Correct equation – not just values for p , q	
		and r . Terms in any order but must have "=0".	
	$15x^2 - 16x + 8 = 0$	Allow any integer multiple.	A1
		Must come from $\alpha + \beta = \frac{2}{3}$, $\alpha\beta = \frac{5}{3}$	
		Condone a different variable (e.g., z)	
			(4)
			Total 7

Question Number	Scheme	Notes	Marks
4	$f(z) = 6z^3 + Az^2 + Bz + C \qquad 0$	Condone work in x throughout	
(a)	$(z=)\frac{2}{3} - \frac{\sqrt{17}}{3}i$	Correct conjugate. Must be seen in (a)	В1
			(1)
(b)	$\left(z - \left(\frac{2}{3} + \frac{\sqrt{17}}{3}i\right)\right) \left(z - \left(\frac{2}{3} - \frac{\sqrt{17}}{3}i\right)\right)$	$-i$) = $\left\{z^2 - \frac{4}{3}z + \frac{7}{3}\right\}$ or e.g.	
	$\alpha + \beta = \frac{2}{3} + \frac{\sqrt{17}}{3}i + \frac{2}{3} - \frac{\sqrt{17}}{3}i = \dots \left\{\frac{4}{3}\right\}, \alpha\beta = \left(\frac{2}{3} + \frac{\sqrt{17}}{3}i\right)$	$\frac{17}{3}i\left(\frac{2}{3} - \frac{\sqrt{17}}{3}i\right) = \dots \left\{\frac{4}{9} + \frac{17}{9} = \frac{7}{3}\right\} \implies \dots \left\{z^2 - \frac{4}{3}z + \frac{7}{3}\right\}$	
		ng a quadratic factor and obtains a 3TQ with pansion or calculation/forming quadratic but	
	score M0 if the starting point is clearl	$y\left(z + \left(\frac{2}{3} + \frac{\sqrt{17}}{3}i\right)\right)\left(z + \left(\frac{2}{3} - \frac{\sqrt{17}}{3}i\right)\right)$	M1A1
		term quadratic factor.	
		$-\frac{4}{3}z + \frac{7}{3} \text{ e.g., } 3z^2 - 4z + 7$	
	May see $(3z - (2 + \sqrt{17}i))(3z - (2 - \sqrt{17}i))$	or $(3z-2)^2 = (\pm\sqrt{17}i)^2 \Rightarrow \{9z^2 - 12z + 21\}$	
	$6\left(z + \frac{3}{2}\right)\left(z^2 - \frac{4}{3}z + \frac{7}{3}\right) = \dots \text{ or }$	e.g., $(2z+3)(3z^2-4z+7) =$	
	Multiplies their 3 term quadratic factor wit	h real coefficients (or multiple) by $z + \frac{3}{2}$ (or	M1
	multiple) to obtain a 4TC w	ith real coefficients so allow	1111
	$\left(z+\frac{3}{2}\right)\left(z^2-\frac{4}{3}z+\frac{7}{3}\right)$	$= \dots \left\{ z^3 + \frac{z^2}{6} + \frac{z}{3} + \frac{7}{2} \right\}$	
	$\{f(z) = \}6z^3 + z^2 + 2z + 21 \text{ or } A = 1, B = 2, C = 21$	A1: Any two correct values for A, B or C (could be embedded) A1: Fully correct expression (ignore an "=0") or three correct values	A1A1
	<u> </u>	ors are not multiplied first e.g., $z^{2} + \left(\frac{5}{6} - \frac{\sqrt{17}}{3}i\right)z - 1 - \frac{\sqrt{17}}{2}i\left(z - \left(\frac{2}{3} - \frac{\sqrt{17}}{3}i\right)\right)$	
	$= z^3 + \frac{1}{6}z^2 + \frac{1}{3}z + \frac{7}{2}$		
		obtaining a 4TC with real coefficients. $(2 \sqrt{17}.)(2 \sqrt{17}.)$	
		$\left(z + \left(\frac{2}{3} + \frac{\sqrt{17}}{3}i\right)\right) \left(z + \left(\frac{2}{3} - \frac{\sqrt{17}}{3}i\right)\right)$	
	Any correct multiple of the 4TC score	s the first A then score as main scheme	
			(5)
<u> </u>			(0)

Question		
Number	Scheme/Notes	Marks
4(b)	Alternative 1: Substituting to obtain simultaneous equations	
	$z = -\frac{3}{2} \Rightarrow -\frac{81}{4} + \frac{9}{4}A - \frac{3}{2}B + C = 0$	
	$z = \frac{2}{3} \pm \frac{\sqrt{17}}{3}i \Rightarrow -\frac{188}{9} \mp \frac{10\sqrt{17}}{9}i + A\left(-\frac{13}{9} \pm \frac{4\sqrt{17}}{9}i\right) + B\left(\frac{2}{3} \pm \frac{\sqrt{17}}{3}i\right) + C = 0$	
	$\Rightarrow -\frac{188}{9} - \frac{13}{9}A + \frac{2}{3}B + C = 0, \pm \left(-\frac{10\sqrt{17}}{9} + \frac{4\sqrt{17}}{9}A + \frac{\sqrt{17}}{3}B = 0\right)$	
	M1: Substitutes $-\frac{3}{2}$ to obtain an equation and substitutes one of $\frac{2}{3} \pm \frac{\sqrt{17}}{3}$ and equates real and imaginary parts to obtain two further equations. All equations must have real coefficients and each variable must appear in at least one equation. A1: All three correct equations	
	$13A - 6B - 9C = -188, \ 4A + 3B = 10, \ 9A - 6B + 4C = 81$ $\Rightarrow A = 1, \ B = 2, \ C = 21$	
	M1: Solves to obtain real values for A, B and C A1: Two correct values A1: All three correct values	
	Alternative 2: Sum/product/pairwise product sum of roots of cubic	
	$sum = \frac{2}{3} + \frac{\sqrt{17}}{3}i + \frac{2}{3} - \frac{\sqrt{17}}{3}i - \frac{3}{2} = \left\{ -\frac{1}{6} \right\} = -\frac{A}{6}$	
	pairwise product sum = $-\frac{3}{2} \left(\frac{2}{3} + \frac{\sqrt{17}}{3} i \right) - \frac{3}{2} \left(\frac{2}{3} - \frac{\sqrt{17}}{3} i \right) + \left(\frac{2}{3} + \frac{\sqrt{17}}{3} i \right) \left(\frac{2}{3} - \frac{\sqrt{17}}{3} i \right) = \dots \left\{ \frac{1}{3} \right\} = \frac{B}{6}$	
	$product = -\frac{3}{2} \left(\frac{2}{3} + \frac{\sqrt{17}}{3} i \right) \left(\frac{2}{3} - \frac{\sqrt{17}}{3} i \right) = \dots \left\{ -\frac{7}{2} \right\} = -\frac{C}{6}$	
	M1: Obtains one equation in A , one in B and one in C all with real coefficients A1: All three correct equations	
	$-\frac{1}{6} = -\frac{A}{6} \Rightarrow A = 1, \frac{1}{3} = \frac{B}{6} \Rightarrow B = 2, -\frac{7}{2} = -\frac{C}{6} \Rightarrow C = 21$	
	M1: Solves to obtain real values for A , B and C Note that A , B and C would be implied by e.g., $-\frac{1}{6}$, $\frac{1}{3}$, $-\frac{7}{2} \Rightarrow x^3 + \frac{1}{6}x^2 + \frac{1}{3}x + \frac{7}{2}$ A1: Two correct values A1: All three correct values	
	If real values for any of the sum/pairwise product sum/product are not explicitly seen allow the M marks if real values for A, B and C (which could be embedded) are obtained. The first A mark would then require all values correct (or a correct cubic) to be awarded.	
	It is possible to e.g., find A and C as above and then use e.g., $f\left(-\frac{3}{2}\right) = 0$ to determine	
	B. In such cases the first M mark is scored when three equations have been attempted.	

4	(h	1
7	1	v	•

Attempts that include long division:

If they find a quadratic factor as in the main scheme e.g., $z^2 - \frac{4}{3}z + \frac{7}{3}$ allow M1A1 as before. Dividing it into f(z) can lead to equations $B - 14 + \frac{4}{3}A + \frac{32}{3} = 0$ and $C - \frac{7}{3}(A+8) = 0$ and these could be used with the equation $-\frac{81}{4} + \frac{9}{4}A - \frac{3}{2}B + C = 0$ from using $f\left(-\frac{3}{2}\right) = 0$ or long division by $z + \frac{3}{2}$. Score the next M for obtaining real values for all constants and the A marks as usual.

Other attempts including long division that do not find the quadratic factor as per the main scheme we will score as follows.

Award the first M1 for credible work to obtain enough equations with real coefficients involving A, B and C so that values could be found, followed by A1 for correct equations. The next M1 is for solving to obtain values for A, B and C and then A1 for two correct values and final A1 for all 3 correct.

If divided by $z + \frac{3}{2}$ the quadratic factor is $6z^2 + (A-9)z + B - \frac{3}{2}A + \frac{27}{2}$

It is possible to apply the quadratic formula to this and equate the answer to $\frac{2}{3} \pm \frac{\sqrt{17}}{3}i$ and generate further equations that way.

(Long division by complex factors is unlikely but could lead to the other equations in Alt 1)

There are potentially a lot of possible precise routes involving long division and coefficient comparison etc. but the above mark scheme principles apply.

Question Number	Scheme/Notes	Marks
4(c)	May use points or lines/vectors from origin. Note that B0B1 is not possible. 1st B1: real root plotted on negative x -axis and the conjugate pair plotted in Q1 and Q4, roughly aligned vertically. Ignore both axis scales and all labelling. 2nd B1: All roots plotted correctly and labelled. Only consider scale of x /real axis so both of the conjugate pair must be clearly closer to the y /imaginary axis than the real root. Award 2nd B0 if one of the conjugate pair is less than half the distance of the other from the x /real axis. If labelled with coordinates they must be the correct way around. Accept $\left(\frac{2}{3}, \pm \frac{\sqrt{17}}{3}\right)$ or $\left(\frac{2}{3}, \pm \frac{\sqrt{17}}{3}\right)$ if coordinates are used and accept these coordinates in vector notation or indicated by axis labels. If roots are only indicated by e.g. z_1, z_2, z_3 these must have been identified in (c) or earlier. 2nd B0 if axes labelled the wrong way round. (They do not need to be labelled or could be labelled x and y).	B1 B1
		Total 8

Question Number	Scheme	Notes	Marks	
5(a)	$r(r+1)(r+5) = r^3 + 6r^2 + 5r$	Correct expansion. May be implied	B1	
	M1: Having achieved two terms of the correction one of $\sum r^3$, $\sum r$	$\frac{1}{4} \frac{1}{4} n^2 (n+1)^2 + 6 \times \frac{1}{6} n(n+1)(2n+1) + \frac{5}{2} n(n+1)$ ect form from the expansion, replaces at least r^2 or $\sum r$ correctly ession in any form	M1A1	
	$= \frac{1}{4}n(n+1)\left[n(n+1)+4(2n+1)\right]$ Obtains $\frac{1}{4}n(n+1)[]$ May be implied by sult Note they might explored by $\frac{1}{4}n(n^3+10n^2+23n+14)$ or $\frac{1}{4}(n^4+10n^3)$ Allow factor reconst Condone poor algebra but if no 3TQ is seen straight to an answer it must follow. Expect	$[n+10] \Rightarrow \frac{1}{4}n(n+1)(n^2+9n+14)$ where is a 3TQ in n because the correct work. pand first to get e.g.,	d M1	
	Requires previous M mark. Correct expression. Not just values.			
	$\frac{1}{4}n(n+1)(n+2)(n+7)$	Brackets in any order. Accept $\frac{n}{4}(n+1)(n+2)(n+7) \text{ or } \frac{n(n+1)(n+2)(n+7)}{4}$	A1	
(b)	20.21.25 + 21.22	× 26 + + 40 × 41 × 45	(5)	
(b)	$= \frac{1}{4} \times 40(40+1)(40+2)(40+7) - $ or $\frac{1}{4} \times 40(41)(42)(47)$	$-\frac{1}{4} \times 19(19+1)(19+2)(19+7) = \dots$ $-\frac{1}{4} \times 19(20)(21)(26) = \dots$		
	substitution as There must be explicit evidence that to So do not accept just 809340 $= \frac{1}{4} \times 3237360 - 4$ Their part (a) must b	tomponents of the products) provided a full above is seen. they are using their result from part (a). $0-51870 =$ but allow e.g., $-\frac{1}{4} \times 207480 =$ e of the correct form. ade up values for a , b and c .	M1	
	= 757 470	757 470 only. Allow 7.5747×10 ⁵ Isw if subsequently rounded	A1	
			(2)	
			Total 7	

Question Number	Scheme	Notes	Marks
6(a)	Any correct expression for $\frac{dy}{dx}$. Allow for a correct $\frac{dx}{dy}$ =	Does not need to be in terms of t . $ \frac{dy}{dx} = -\frac{y}{x} \text{ or } x = 10t, y = \frac{10}{t} \Rightarrow \frac{dy}{dx} = \frac{-10t^{-2}}{10} $ $ \frac{dy}{dx} = -\frac{100}{t} \Rightarrow \frac{dy}{dx} = -\frac{100}{t} \Rightarrow \frac{dy}{dx} = -\frac{100}{t} \Rightarrow \frac{dy}{dx} = -\frac{100}{t} \Rightarrow \frac{dy}{dx} = -\frac{1}{t^2}. $ The proof of the equation of the equation is the equation of the equation of the equation is the equation of the equation of the equation is the equation of the equation of the equation is the equation of the equation of the equation is the equation of the	B1
	Correct use of the perpendicular gradient r May come dire	$\frac{\frac{10}{t}}{0t} \Rightarrow m_N = t^2 \text{ or } m_T = -t^{-2} \Rightarrow m_N = t^2$ $\text{ule to obtain a normal gradient } \mathbf{at} \left(10t, \frac{10}{t} \right)$ $\text{extly from } -\frac{\mathrm{d}x}{\mathrm{d}y}.$ $t^2 \text{ scores } 0110 \text{ maximum.}$	M1
		Correctly forms the normal equation with a changed gradient in terms of t . Condone late	M1
	Obtains the given answer with intermediate reversed and terms/products could be in $10t^4$ Allow e.g., $t^3x - ty$	$x+10-10t^4 \Rightarrow t^3x-ty=10(t^4-1)^*$ Ite line and no errors. Final answer could be a different order but must have factorised -10 . written as $t(xt^2-y)$ arks are required.	A1*

Question Number	Scheme	Notes	Marks
6(b)	$x = 0 \Rightarrow -ty = 10(t^4 - 1) \Rightarrow y = \dots \left\{-\frac{10(t^4 - 1)}{t}\right\}$	Substitutes $x = 0$ to find y for Q May just restate their c from (a). Apply BOD throughout if the minus sign just disappears	M1
	$\frac{1}{2} \left(\frac{10(t^4 - 1)}{t} \right) \times 10t = 750$ May see a explicit intercent also used a gr	Correct method for the area of the triangle and sets = 750 or equivalent work e.g., $\left("10t^3 - \frac{10}{t} " \right) \times 10t = 1500$	
	May see x-axis intercept also used e.g., $\frac{1}{2} \times "\frac{10(t^4 - 1)}{t^3}" \times \left(\frac{10}{t} + "\frac{10(t^4 - 1)}{t}"\right) = 750$ Allow with modulus signs used	Allow with their y (and possibly their x -axis intercept) and allow for the sign of their y (and/or x) coordinate uncorrected and note that $-10t$ may be used with uncorrected y . There are no marks if they have Q on the	M1
	"Shoelace" methods only get credit wh	x-axis instead of the y-axis nen the determinants are processed. Look for	
	•	ions as above.	
		in this order for this possible variation: Jses a correct triangle method to find <i>y</i> coord.	
	1 ~1	$10(t^4-1)$ 2nd M1: Subs. into normal equation	
		or $\frac{1}{2} \left(-\frac{10(t^4 - 1)}{t} \right) \times -10t = 750$ or $\frac{1}{2} \left(\frac{10}{t} - 10t^3 \right) \times -10t = 750$	
	$\Rightarrow \{50t^4 - 50 =$	$=750 \Longrightarrow t^4 = \dots \{16\}$	
	If they additionally work with an i Modulus signs must have been remo working, but do be vigilant with attem obtained	om a correct equation. Allow if is negative. ncorrect equation then ignore this work. ved although this could happen later in the apts where e.g., the "16" has clearly not been appropriately.	M1
	$\left\{ \Rightarrow t = \pm 2 \Rightarrow \left(10 \times \pm 2, \ \frac{10}{\pm 2} \right) \right\}$	$\left(\frac{0}{2}\right) \Rightarrow \left\{ (20, 5), (-20, -5) \text{ only} \right\}$	
	A1: Both correct and no oth Allow for $x =, y =$ bu	et pair of coordinates hers including complex solutions. t must be clearly paired correctly Score A1 A0 for e.g., $(\pm 20, \pm \frac{10}{2})$	A1 A1
		hey have come from an incorrect equation. of coordinates might be deduced.	
			(5)
			Total 9

Question Number	Scheme	Notes	Marks
7(i)(a)	A rotation of $240^{\circ}/\frac{4\pi}{3}$ (anti/counter clockwise) about/around/at centre (0, 0)/origin/O M1: Any rotation. Condone "rotate" for all marks A1: Fully correct description. Condone missing degrees symbol. If direction is not mentioned assume anticlockwise so allow rotation of $120^{\circ}/\frac{2\pi}{3}$ clockwise about O. $-120^{\circ}/-\frac{2\pi}{3}$ (anticlockwise) or $-240^{\circ}/-\frac{4\pi}{3}$ clockwise are also acceptable. Must be a single transformation.		M1A1
	3		(2)
(b)	$\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$	Correct matrix. Allow if they omit (b) and this matrix is seen in (c).	B1
			(1)
(c)	$\{\mathbf{C} = \mathbf{A}\mathbf{B} = \} \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \ \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \ $	Forms a correct product of matrices with their B Condone a clear miscopy of A	M1
	$\begin{pmatrix} -1 & \frac{\sqrt{3}}{2} \\ -\sqrt{3} & -\frac{1}{2} \end{pmatrix}$	Correct matrix. Any equivalent. No evidence of incorrect method for product or any incorrect matrices.	A1
			(2)

Question Number	Scheme	Notes	Marks
7(ii)(a)	$ \begin{pmatrix} k & -2 \\ -1 & 2k \end{pmatrix} \begin{pmatrix} k \\ k \end{pmatrix} = \begin{pmatrix} k^2 - 2k \\ -k + 2k^2 \end{pmatrix} \left\{ = \begin{pmatrix} 35 \\ 91 \end{pmatrix} \right\} $	Multiplies to obtain one correct element. May just see e.g., $\begin{pmatrix} k \\ -2 \end{pmatrix} = \begin{pmatrix} k^2 - 2k \end{pmatrix}$	M1
	 k²-2k-35=0 ⇒ k = or 2k²-k-91=0 ⇒ k = Attempts to solve one correct quadratic equation. Usual rules. One root correct if no working. This mark can also be awarded if they solve a correct 3TQ following combining correct equations e.g., 3k²-3k-126{= k²-k-42=0} = 0 ⇒ k = {7, -6} If they eliminate to a correct equation that isn't a 3TQ then one solution must be correct e.g., 3k²-147 = 0 ⇒ k² = 49 ⇒ k = {±}7 or -3k+21=0 ⇒ k = 7 If reduced to a linear equation allow all marks otherwise 1100 max if the evidence is that only one quadratic has been solved (e.g., 2 solutions from one equation offered even if one is "rejected" etc. rather than crossed out - ignore all crossed out work) 		M1
	$k^{2}-2k-35=0 \Rightarrow k=\{-5,7\}$ and $2k^{2}-k-91=0 \Rightarrow k=\{-\frac{13}{2},7\}$ Or one of the above with one of $3k^{2}-3k-126=0 \Rightarrow k^{2}-k-42=0 \Rightarrow k=\{7,-6\}$ or $3k^{2}-147=0 \Rightarrow k^{2}=49 \Rightarrow k=\{7,-7\}$ Or $\Rightarrow -3k+21=0 \Rightarrow k=7$ Factorisations shown below	Attempts to solve two correct quadratic equations (or one correct linear). Usual rules. One root correct if no working. Allow if they obtain 7 from one equation and verify correctly that it works in the second equation (or shows that the other root doesn't work). It is valid to solve one of the equations with a combined equation. Allow if equations not "extracted" from matrices e.g., $ \binom{k^2 - 2k}{-k + 2k^2} = \binom{35}{91} $	M1
	$k^2 - 2k - 35 = (k+5)(k-7), 2k^2 - k - 91 \Rightarrow (2k+13)(k-7), k^2 - k - 42 \Rightarrow (k+6)(k-7), k^2 - 49 \Rightarrow (k+6)(k-7), k^2 $		+7)(k-7) A1
			(4)

Question Number	Scheme	Notes	Marks
7(ii)(b)	$\left\{ \begin{vmatrix} "7" & -2 \\ -1 & 2 \times "7" \end{vmatrix} \Rightarrow \right\} "7" \times 2 \times "7" - (-1)(-2) = 96 \right\}$	Correct numerical expression for det M correct for any of their values of k. May be implied by sight of "96"×336 (or e.g. 32256). Allow an invented value of k	M1
	$\Rightarrow \frac{7}{2} \left\{ \text{or } 3.5, \ 3\frac{1}{2}, \frac{336}{96} \right\}$	Correct value and <u>no others</u> . Any equivalent	A1
	If points and transformed points are used a correct numerical expression for the area scale factor or its reciprocal must be achieved for the M mark		(2)
			Total 11

Question Number	Scheme/Notes	Marks
8	Condone work in n instead of k throughout	
8(i)	$n = 1 \left\{ in \begin{pmatrix} 1 - 3n & 9n \\ -n & 3n + 1 \end{pmatrix} \right\} \Rightarrow \begin{pmatrix} 1 - 3 & 9 \\ -1 & 3 + 1 \end{pmatrix} = \begin{pmatrix} -2 & 9 \\ -1 & 4 \end{pmatrix}$ Obtains $\begin{pmatrix} -2 & 9 \\ -1 & 4 \end{pmatrix}$ or $\begin{pmatrix} -2 & 9 \\ -1 & 4 \end{pmatrix}$ with (minimal) substitution seen.	B1
	One of $1-3$ or $1-3(1) \to -2$ or $9(1) \to 9$ or $-(1) \to -1$ or $3+1$ or $3(1)+1 \to 4$ is sufficient.	
	No requirement to say "true" (oe) yet. Ignore further verifications for $n = 2$ etc.	
	{Assume true for $n = k$:} $\begin{pmatrix} -2 & 9 \\ -1 & 4 \end{pmatrix}^k = \begin{pmatrix} 1 - 3k & 9k \\ -k & 3k + 1 \end{pmatrix}$	
	$ \begin{pmatrix} -2 & 9 \\ -1 & 4 \end{pmatrix}^{k+1} = \begin{pmatrix} 1 - 3k & 9k \\ -k & 3k+1 \end{pmatrix} \begin{pmatrix} -2 & 9 \\ -1 & 4 \end{pmatrix} \text{ or } \begin{pmatrix} -2 & 9 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 1 - 3k & 9k \\ -k & 3k+1 \end{pmatrix} $ $ (-2 & 9)^{k+1} $	M1
	Completes an attempt to form $\begin{pmatrix} -2 & 9 \\ -1 & 4 \end{pmatrix}^{k+1}$ in terms of k	
	$= \begin{pmatrix} -2+6k-9k & 9-27k+36k \\ 2k-3k-1 & -9k+12k+4 \end{pmatrix} \text{ or } \begin{pmatrix} -2+6k-9k & -18k+27k+9 \\ -1+3k-4k & -9k+12k+4 \end{pmatrix} \text{ or } \begin{pmatrix} -2-3k & 9+9k \\ -k-1 & 3k+4 \end{pmatrix}$ Correct unsimplified or simplified matrix with no unexpanded expressions	A1
	$ \left\{ = \begin{pmatrix} -2 - 3k & 9 + 9k \\ -k - 1 & 3k + 4 \end{pmatrix} \right\} = \begin{pmatrix} 1 - 3(k+1) & 9(k+1) \\ -(k+1) & 3(k+1) + 1 \end{pmatrix} $ Reaches a correct matrix fully in terms of $k+1$ (terms in any order and allow for any $k+1$ to be written as $1+k$) with no errors. Meet in the middle approaches must be convincing. Requires previous two marks.	A1
	If the result is true for $n = k$ then it is true for $n = k + 1$. As the result has been shown to be true for $n = 1$, then the result is true for (all) n . Correct conclusion/narrative. All the elements in bold should be satisfied. Please consider the narrative and conclusion together. Allow poor phrasing if the intention is clear. "Assume $n = k$ " in the narrative followed by "true for $n = k + 1$ " in the conclusion plus "true for $n = 1$ " and "true for (all) n " is sufficient. For the last statement allow "true for n ", "true for $n = 1$ " and condone "true for $n = 1$ ", "true for integers after 1" or similar but do not allow "true for all $n \in n = 1$ " or just "true". Accept surrogates for "true" such as "correct for"/"it works for" etc. Requires previous 3 marks. Note that 01111 can only be awarded if the B mark was withheld for insufficient indication of substitution. If the base case work is omitted or wrong in any other way then 01110 is the maximum available.	A1 (5)
	Note that is valid to e.g., assume true for $n = k + 1$ and show true for $n = k + 2$: $ \begin{pmatrix} -2 & 9 \\ -1 & 4 \end{pmatrix}^{k+2} = \begin{pmatrix} 1 - 3(k+1) & 9(k+1) \\ -(k+1) & 3(k+1) + 1 \end{pmatrix} \begin{pmatrix} -2 & 9 \\ -1 & 4 \end{pmatrix} = \begin{pmatrix} -3k - 2 & 9k + 9 \\ -k - 1 & 3k + 4 \end{pmatrix} \begin{pmatrix} -2 & 9 \\ -1 & 4 \end{pmatrix} = \begin{pmatrix} 6k + 4 - 9k - 9 & -27k - 18 + 36k + 36 \\ 2k + 2 - 3k - 4 & -9k - 9 + 12k + 16 \end{pmatrix} = \begin{pmatrix} -3k - 5 & 9k + 18 \\ -k - 2 & 3k + 7 \end{pmatrix} = \begin{pmatrix} 1 - 3(k+2) & 9(k+2) \\ -(k+2) & 3(k+2) + 1 \end{pmatrix} $ Use Review for any such approaches you are not sure about.	

Scheme/Notes	Marks
$u_1 = 1$ $u_2 = 4$ $u_{n+2} = 6u_{n+1} - 9u_n$ $n \square 1 \Rightarrow u_n = 3^{n-2}(n+2)$	
$n = 1 \Rightarrow u_1 = 3^{-1}(2+1) = 1, n = 2 \Rightarrow u_2 = 3^{0}(2+2) = 4$	
Obtains $u_1 = 1$ and $u_2 = 4$ from $u_n = 3^{n-2} (n+2)$ with some substitution seen for both	B1
cases although it may be minimal. Look for any numerical expressions that give 1 and 4. No requirement to say "true" (oe) yet. Ignore work for u_3 and beyond	B1
{Assume true for $n = k$ and $n = k + 1$:} $u_k = 3^{k-2} (k+2)$ and $u_{k+1} = 3^{k-1} (k+3)$	
$u_{k+2} = 6u_{k+1} - 9u_k = 6 \times 3^{k-1} (k+3) - 9 \times 3^{k-2} (k+2)$	
Attempts u_k and u_{k+1} using $u_n = 3^{n-2}(n+2)$ and proceeds to attempt to use	M1
Reaches a correct expression in terms of $k + 2$ with no errors.	A1
result has been shown to be true for $n = 1$ and $n = 2$, then result is true for (all) n . Correct conclusion/narrative. Please consider the narrative and conclusion together. Allow poor phrasing if the intention is clear. All the elements in bold should be satisfied. "Assume $n = k$ and $n = k + 1$ " in the narrative followed by "true for $n = k + 2$ " in the conclusion plus "true for $n = 1$ and $n = 2$ " and "true for (all) n " or "true for $n \in 1$ " is sufficient. For the last statement allow "true for n ", "true for $n \in 1$ ", "true for $n \in 1$ " and condone "true for $n \in 1$ ", "true for integers after 1" etc. but do not allow "true for all $n \in 1$ " or just "true". Accept surrogates for "true" such as "correct for"/"it works for" etc. Requires previous 3 marks. Note that 01111 can only be awarded if the B mark was withheld for insufficient indication of substitution. If just " $n \in 1$ " is seen this is not sufficient evidence of any attempt to substitute and so the maximum score could only be 01110. The same applies if there are any errors in substitution. However e.g., just e.g., "when $n = 1$, $n \in 1$, when $n = 1$, $n \in 1$ can score 01111 since this implies an attempt to verify the values and no errors are seen.	A1
	Total 10
See overleaf for approaches that assume true for $n = k - 1$ and $n = k$ and show true for $n = k + 1$	
	$n=1\Rightarrow u_1=3^{-1}(2+1)=1, n=2\Rightarrow u_2=3^0(2+2)=4$ Obtains $u_1=1$ and $u_2=4$ from $u_n=3^{n-2}(n+2)$ with some substitution seen for both cases although it may be minimal. Look for any numerical expressions that give 1 and 4. No requirement to say "true" (oe) yet. Ignore work for u_3 and beyond {Assume true for $n=k$ and $n=k+1$:} $u_k=3^{k-2}(k+2) \text{ and } u_{k+1}=3^{k-1}(k+3)$ $u_{k+2}=6u_{k+1}-9u_k=6\times 3^{k-1}(k+3)-9\times 3^{k-2}(k+2)$ Attempts u_k and u_{k+1} using $u_n=3^{n-2}(n+2)$ and proceeds to attempt to use recurrence relation to obtain u_{k+2} in terms of $k=6\times 3^k+2k\times 3^k-2\times 3^k-k\times 3^k$ or e.g., $2\times 3^k(k+3)-3^k(k+2)$ Obtains an expression where all terms are multiples of 3^k . Requires previous mark $\{=4\times 3^k+k\times 3^k=3^k(k+4)\}=3^{(k+2)-2}(((k+2)+2) \text{ or } 3^{k+2-2}(k+2+2)$ Reaches a correct expression in terms of $k+2$ with no errors. Meet in the middle approaches must be convincing. If the result is true for $n=k$ and $n=k+1$ then shown true for $n=k+2$. As the result has been shown to be true for $n=1$ and $n=2$, then result is true for (all) n . Correct conclusion/narrative. Please consider the narrative and conclusion together. Allow poor phrasing if the intention is clear. All the elements in bold should be satisfied. "Assume $n=k$ and $n=k+1$ " in the narrative followed by "true for $n=k+2$ " in the conclusion plus "true for $n=1$ and $n=2$ " and "true for (all) n " or "true for $n=k-1$ " "true for "", "true for "", "true for "", "true for "", "true for "" and condone "true for "", "true for integers", "true for integers after 1" etc. but do not allow "true for all $n\in \mathbb{C}$ " or just "true". Accept surrogates for "true" such as "correct for"," it works for" etc. Requires previous 3 marks. Note that 01111 can only be awarded if the B mark was withheld for insufficient indication of substitution. If just " $u_1=1$, $u_2=4$ " is seen this is not sufficient evidence of any attempt to substitute and so the maximum score could only be 01110. The same applies if there are any errors in su

8(ii)

Note that is valid to e.g., assume true for n = k - 1 and n = k and show true for n = k + 1:

$$n = 1 \Rightarrow u_1 = 3^{-1} (2+1) = 1, \quad n = 2 \Rightarrow u_2 = 3^0 (2+2) = 4$$

$$u_{k-1} = 3^{k-3} (k+1) \qquad u_k = 3^{k-2} (k+2)$$

$$u_{k+1} = 6u_k - 9u_{k-1} = 6 \times 3^{k-2} (k+2) - 9 \times 3^{k-3} (k+1)$$

$$= 2 \times 3^{k-1} (k+2) - 3^{k-1} (k+1) \text{ or e.g., } 2k \times 3^{k-1} + 4 \times 3^{k-1} - k \times 3^{k-1} - 3^{k-1}$$

$$= k \times 3^{k-1} + 3 \times 3^{k-1} = 3^{k-1} (k+3) = 3^{(k+1)-2} ((k+1)+2) \text{ or } 3^{k+1-2} (k+1+2)$$

B1: As main scheme

M1: Attempts u_{k-1} and u_k using $u_n = 3^{n-2} (n+2)$ and proceeds to attempt to use recurrence relation to obtain u_{k+1} in terms of k

dM1: Obtains an expression where all terms are multiples of 3^{k-1} . Requires previous mark

A1: Reaches a correct expression in terms of k + 1 with no errors.

A1: If result is **true for** n = k - 1 and n = k then shown **true for** n = k + 1. As the result has been shown to be **true for** n = 1 and n = 2, then result is **true for** (all) n. See main scheme for guidance on the last mark.

Use Review for any similar approaches you are not sure about.

Question Number	Scheme	Notes	Marks
9(a)	$y^{2} = \frac{1}{2}x, \ P\left(\frac{t^{2}}{8}, \frac{t}{4}\right) \Rightarrow y = \frac{1}{\sqrt{2}}\sqrt{x} \Rightarrow \frac{dy}{dx} = \frac{1}{2\sqrt{2}\sqrt{x}} = 0$ or $2y\frac{dy}{dx} = \frac{1}{2} \Rightarrow \frac{dy}{dx} = \frac{1}{4y} = \frac{1}{4\left(\frac{t}{4}\right)}\left\{=\frac{1}{t}\right\}$ or x Correct $\frac{dy}{dx}$ in terms of t . Could be uns	1	B1
	$y - \frac{t}{4} = \frac{1}{t} \left(x - \frac{t^2}{8} \right)$ or $\frac{t}{4} = \frac{1}{t} \left(\frac{t^2}{8} \right) x + c \Rightarrow c = \dots \left\{ \frac{t}{8} \right\}$	Correct straight line method with an unchanged gradient in terms of <i>t</i> . Condone late substitution of <i>x/y</i> into gradient if initial gradient not in terms of <i>t</i> (the first two marks are then accessible and A1* is possible)	M1
	e.g., $8ty - 2t^2 = 8x - t^2$ or $8yt = 8x + t^2$ or $y = \frac{1}{t}x + \frac{t}{8}$ $\Rightarrow 8yt - 8x = t^2 *$	Obtains the answer via intermediate line and no errors. Accept answer with t^2 on one side and $8ty-8x$ or $8(yt-x)$ or $8(ty-x)$ on the other (these 2 terms in either order). Requires both previous marks.	A1*
(b)	$x = 0 \Rightarrow 8yt = t^2 \Rightarrow y = \frac{t}{8} \left\{ Q_y = \frac{t}{16} \right\}$	Correct <i>y</i> coordinate of <i>A</i> Could be unsimplified.	(3) B1 (M1 on ePen)
	{Midpoint of AP :} $\left(\frac{0+\frac{t^2}{8}}{2}, \frac{\frac{t}{8}+\frac{t}{4}}{2}\right) \left\{=\left(\frac{t^2}{16}, \frac{3t}{16}\right)\right\}$	Finds midpoint of AP using a fully correct method for their A which is of the form $(0, f(t))$ May be given as $x =, y =$	M1
	$ \left\{ \text{equation of } l_2 : \right\} y - \frac{3t}{16} = -t \left(x - \frac{t^2}{16} \right) \\ \text{or } y = -tx + c \Rightarrow \frac{3t}{16} = -t \left(\frac{t^2}{16} \right) + c \Rightarrow c = \dots \left\{ \frac{3t + t^3}{16} \right\} $	Forms the equation of the perpendicular bisector of AP correct for their midpoint of AP and with gradient $-t$ (oe). Not dependent but the coordinates of their midpoint must both be functions of t	M1
	$y = \frac{t}{16} \Rightarrow \frac{t}{16} - \frac{3t}{16} = -tx + \frac{t^3}{16} \Rightarrow x = \frac{2+t^2}{16} \Rightarrow 2 + 256y^2 = 16x$ or e.g., $\frac{t}{16} = -tx + \frac{3t+t^3}{16} \Rightarrow 1 = -16x + 3 + t^2 \Rightarrow -2 = -16x + 256y^2$ $y - 3y = -16y \left(x - \frac{256y^2}{16} \right) \Rightarrow -2 = -16 \left(x - \frac{256y^2}{16} \right) \left\{ \Rightarrow -2 = -16x + 256y^2 \right\}$ Any correct 3 term equation (may be factorised) with t eliminated		A1
	$y^{2} = \frac{1}{16}.$ Correct equation in the correct form $y^{2} = 0.0625x - 0.0078125$ or equivalent e.g., $-\frac{2}{256} + \frac{16}{256}x = y^{2}$ and isw if subs	$x - \frac{1}{128}$ with y^2 on its own on one side. Allow the fractions for α and β in $y^2 = \alpha x + \beta$	A1
			(5) Total 8