Please check the examination details belo	w before entering your candidate information					
Candidate surname	Other names					
Centre Number Candidate Nu Pearson Edexcel Inter	national Advanced Level					
Wednesday 10 January 2024						
Morning (Time: 1 hour 30 minutes)	Paper reference WCH11/01					
Chemistry	* *					
International Advanced Su UNIT 1: Structure, Bondin Organic Chemistry	-					
You must have: Scientific calculator, ruler	Total Marks					

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

SECTION A

Answer ALL the questions in this section.

You should aim to spend no more than 20 minutes on this section.

For each question, select one answer from A to D and put a cross in the box \boxtimes . If you change your mind, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

1 The first ionisation energies of four successive elements in the Periodic Table are shown.

	Element			Р	Q	R	S
	First	ion	isation energy/kJ mol ⁻¹	1251	1521	419	590
(a) \	Which	ı ele	ment has atoms with a fu	ull outer shell	of electrons?		
	\mathbf{X}	Α	element P				
	\mathbf{X}	В	element Q				
	X	с	element R				
	\mathbf{X}	D	element S				
(b) \	Which	ı ele	ment could be X in a gas	eous covalen	t compound	with the form	nula HX?
	\mathbf{X}	Α	element P		·		
	\mathbf{X}	В	element Q				
	×	С	element R				
	\mathbf{X}	D	element S				
(c) \	- Which		ment could be Y in an ior	nic compound	d with the for	mula YF ₂ ?	
		Α	element P				
	\mathbf{X}	В	element Q				
	\mathbf{X}	С	element R				
	\mathbf{X}	D	element S				
(d) \	Which	ı ele	ment has atoms with the	largest atom	ic radius?		
		Α	element P				
	\mathbf{X}	В	element Q				
	\mathbf{X}	C	element R				
	\mathbf{X}	D	element S				

(Total for Question 1 = 4 marks)

			1s	2s		2p		
	X	Α	$\uparrow\downarrow$	\uparrow	$\uparrow\downarrow$	\uparrow	\uparrow]
	X	В	$\uparrow\downarrow$	\uparrow	$\uparrow\downarrow$	$\uparrow\downarrow$		
	X	С	$\uparrow\downarrow$	$\uparrow\downarrow$	\uparrow	\uparrow	\uparrow	
	×	D	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	\uparrow		
								(Total for Question 2 = 1 mark)
	Whic	ch sp	oecies does	not conta	ain a total	l of 16 ne	utrons?	
	×	Α	a molecul	e of ether	ne, ${}^{12}C_{2}{}^{1}H_{4}$			
	X	В	a molecul	e of oxyge	en, ¹⁶ O ₂			
	X	C	an atom c	of silicon, ³	^o Si			
	×	D	an ion of s	sulfur, ³² S ²	_			
								(Total for Question 3 = 1 mark)
•			ponse gives air of atomi					
	Whio Perio	ch pa odic	air of atomi Table?					nts. at are in different blocks of the
	Whic Peric	ch pa odic A	air of atomi Table? 5, 9					
ļ	Whice Perice	ch pa odic A B	air of atomi Table? 5, 9 10, 16					
ŀ	Whic Peric	ch pa odic A B C	air of atomi Table? 5, 9 10, 16 13, 18					
	Whic Peric	ch pa odic A B C	air of atomi Table? 5, 9 10, 16					
	Whice Perice	A B C D	air of atomi Table? 5, 9 10, 16 13, 18	ic number				at are in different blocks of the
	Whice Perice	A B C D	air of atomi Table? 5, 9 10, 16 13, 18 16, 20	ic number				at are in different blocks of the
	Whice Perice	A B C D ch m A	air of atomi Table? 5, 9 10, 16 13, 18 16, 20	ic number				at are in different blocks of the
	Whice Perice	A B C D ch m A	air of atomi Table? 5, 9 10, 16 13, 18 16, 20 nolecule is p $CO_2(g)$ $CCl_4(g)$	ic number				at are in different blocks of the
	Whice Perice International Int	A B C D Chm A B	air of atomi Table? 5, 9 10, 16 13, 18 16, 20 nolecule is p CO₂(g) CCl₄(g)	ic number				at are in different blocks of the
	Whice Perice	ch pa odic A B C D ch m A B C	air of atomi Table? 5, 9 10, 16 13, 18 16, 20 nolecule is p $CO_2(g)$ $CCl_4(g)$ $BeCl_2(g)$	ic number				at are in different blocks of the
	Whice Perice	ch pa odic A B C D ch m A B C	air of atomi Table? 5, 9 10, 16 13, 18 16, 20 nolecule is p $CO_2(g)$ $CCl_4(g)$ $BeCl_2(g)$	ic number				at are in different blocks of the (Total for Question 4 = 1 mark)

X		2		2	٩.	2	
. X							
					5		
		S		S			
X							
\sim	7		5		2	l	
	d	p	e	s	s		
.х	Л	١.		s	₽		
\sim		2	8	۲	٩,	l	
	4	à	ø	÷	6		
x	Л	R.		2	8		
\sim	1	6	è	a	Р.		
X	2	٤.	2	ς.	2	٩,	
\sim	3	2	3	3	Р,		
XO	4		2	2	6	2	
~	7	2	Ζ		7	5	
X	2	ø	ę	q	ŝ		
	4	Þ		2	9		
N	2	٩	t	ø	P	5	
	S			<	b		
х.)	QI	۶	ę	-	8	>	
\sim		5			F	5	
			2	4	è		
Х.)	4		1	9	₹	2	
\sim		Σ			Ľ.		
X	3		E	z	2		
v		2	2	7	۲	2	
\sim	78	2			s	5	
	2	'n		6	₽		
×V	e		5	7	٢.	2	
	æ	9	p	=	g		
		6		<	ß		
\sim	ų	,	ę	7	Ø.	2	
				У	₹		
X	л	R		R	ł		
\sim	Ч	Y		И	8		
				>			
A	Â.	i.	ei	٤.	a)		
\sim	12				2		
	ø	9	ę		8		
x	7	à	é	5	2	٩,	
\sim	9	e	-	e	۳,		
					٤.		
~	74	5	2	53	8	5	
\times	3	Ċ	2		ı,		
×V	S	2	÷	÷	5	2	
~	7	7		5	7	5	
	2	4		Ľ	2		
X	C	Ζ	5	Z	2	2	
\sim	æ	7	P	-	F	S	
. X	2	£.	2	Ġ.	è		
\sim	9	Ľ			3	2	
		7	2		7		
. х	-2	ς.					
\sim	15	1	P	×,	2		
\sim	4	2	ĥ		ø		
X	,	5			>		
\sim	9	p		e	٩.	2	
	4	à		2	ø		
×	2	5			2		
\sim	1	۴			8	2	
\times	d	Þ	đ	D	s		
x	À	í.	2		2	٩,	
\sim		7	c		b		

6	Wh	ich d	oxide of nitroger	n contains	s 30% nit	trogen l	by mas	s?				
	[A _r v	valu	es: N = 14.0 C	D = 16.0]								
	X	A	NO									
	X	В	NO ₂									
	X	С	N_2O									
	X	D	N_2O_3									
								(Total	for Que	estion 6	= 1 mar	k)
7			te the mass of so ol dm ⁻³ solution		rbonate ((Na₂CO₃	3) requir	red to m	ake up 2	250 cm ³	of a	
	[<i>A</i> , v	valu	es: C = 12.0 C	D = 16.0	Na = 23.	.0]						
	X	A	1.30 g									
	X	В	2.65 g									
	X	С	5.30 g									
	X	D	10.6 g									
								(Total	for Que	estion 7	' = 1 mar	k)
8	A b	lock	of lead measuri	ng 10 cm	× 10 cm	× 10 cn	n conta	ins 3.29	5 × 10 ²⁵	atoms.		
	Calo	cula	te the density of	lead.								
	[<i>A</i> , v	valu	e: Pb = 207.2	Avoga	dro cons	stant, L :	= 6.02	× 10 ²³ m	ol ⁻¹]			
	X	A	$3.79\mathrm{gcm^{-3}}$									
	X	В	$4.49{\rm gcm^{-3}}$									
	\mathbf{X}	С	$11.34\mathrm{gcm^{-3}}$									
	X	D	54.73 g cm ⁻³									
								(Total	for Que	estion 8	= 1 mar	k)
	Use	e thi	s space for any	rough w	orking. /	Anythir	ng you	write in	this spa	ace will	gain no	credit.

P 7 3 4 5 5 A 0 4 2 0

9 Which are the correct bonding and structure for one of the substances listed?

	Substance		Bonding	Structure		
×	Α	copper(II) sulfate	covalent	giant		
×	В	graphene	covalent	simple molecular		
×	С	iodine	metallic	simple molecular		
X	D	sodium	metallic	giant		

(Total for Question 9 = 1 mark)

10 An excess of sodium sulfate solution is added to 50 cm³ of a 0.100 mol dm⁻³ solution of barium chloride.

What is the mass of barium sulfate formed?

[M_r value: BaSO₄ = 233.4]

 $Na_2SO_4(aq) + BaCl_2(aq) \rightarrow 2NaCl(aq) + BaSO_4(s)$

- A 1.167 gB 2.334 g
- 🖸 **C** 11.67 g
- ☑ D 23.34 g

(Total for Question 10 = 1 mark)

- 11 Which compound shows the greatest degree of polarisation?
 - A sodium chloride
 - B sodium iodide
 - C magnesium chloride
 - **D** magnesium iodide

(Total for Question 11 = 1 mark)

							Σ	
2		2				2	S	2
2						2	ς	2
S						>		>
						S		S
						ς	>	
							>	
2		2	S	2	5	2	2	2
			1	ľ	5	Ź	ļ	
2	S	2		2	b	۴	٩,	2
	ς		ç	ò	ą	h	6	\geq
>			4	ļ	2	N	Į	>
>				2	0	2		>
	2		á	5	é	÷	ń	S
ς	2	ς	2	S	è	R	2	ς
			2	5	7		7	<
			h	ø	9	ų	k	
	S		J	k	2	4	ļ	
2	ς	2	Ş	7	2	7	'n	2
>			ą	÷	ę	9	8	>
						X	5	≻
5			4	è	ś	ķ	é	5
Ś	2		2	3		2	ø	S
ŝ		ς	2	ş	F		ù	ς
			à	6	è	6	ŝ	
			2	Ζ		Z	ŀ	
2		2	S	Ζ	S	Ζ	2	2
2	ς		S	7	2	7	5	2
			ą	è	ģ	è	8	>
S		>	ć	\geq	(Ŋ	5	S
Ś		S	ł	5		12	ï	S
	2		2	٩,	2		7	ς
			à	4	ì	4	ì	
			S	Z	2	Ζ	2	
2			S	Ζ	5		5	2
2	ς	2	q	ß	é	è	É,	2
	ς					Σ	2	\geq
>			4	è	ń	è	8	>
5			ć	2	ć	Ŋ	Ē	5
ŝ	2		ł	5		5	7	S
ς		ς	à	ć,	å	Ľ,	È	ς
			ì	ń	è	ń	è	<
	2		ì	£	2		è	
	S		9	ų	ļ		ų	
2		2						2
			ą	h	Ŕ		2	2
>	<	>	4	ð	h	ÿ	ę	>
>	<	≻	4		6	à	á	≻
5	2		G	S		S	Ï	5
ŝ	2		Ż	5	2	5	2	S
ς		ς	1	K		Ñ	ľ	ς
<	>	<	å	Ľ	2		3	<
	>			3			b	

					4					
				h						
			S							
			à							
2			9	r		2			2	
	2		Л	ь	2	5	ø	2		
2	١,	2		2	4	۲	5	5	7	
١,			2	5	2	2			١,	
			3	è	=	e				
							ę.			
2			٢.	2	-		ø		2	
					2					
						ş				
					Ļ					
						è				
			ì			ą				
						Ì				
						Z	₹			
5			4	2		2	4			
			3	2	7	c	5			
			4	=	-	è	S,			
			A	٤.		٤.,	2			
5	2	5	Л	÷	ø		ø	2	ς.	
	١,			2				5		
				1	ç					
			ì	ø	9	٣	2			
2				2	<	2	5		>	
)	z		ą		2		
2		2	S	ú		4	Ø.	5	7	
N		N	1	e	2	-	7		\sim	
	N		ĥ	sé	à	ź	è	N		
			d	Ľ		12				
			3	ŧ.	9		4			
			4	h	۷.	2				
	2			4	P			2		
2		2	ĥ	d	p#	۴	۲		7	
5	2	1	2	5				l	ς,	
								5		
2		2							2	
	2							2		
2	1	2						5	2	
N		5							١,	

~			
12 A sa	amp	le of seaweed co	ontains 30.0 mg of iodine per kg.
Wh	at is	the number of i	odine atoms in 10 kg of this seaweed?
[<i>A</i> , v	valu	e: I = 126.9	Avogadro constant $L = 6.02 \times 10^{23} \text{ mol}^{-1}$]
\times	A	7.12 × 10 ¹⁹	
\times	В	1.42×10^{20}	
\times	С	7.12×10^{20}	
\times	D	1.42×10^{21}	
			(Total for Question 12 = 1 mark)
13 The	cor	centration of su	Ifur dioxide in a sample of polluted air is 0.4 ppm.
			of sulfur dioxide molecules in this polluted air?
		0.4%	
		0.004%	
		0.0004%	
\mathbf{X}		0.0000004%	
		0.0000001/0	(Total for Question 13 = 1 mark)
14 Hov	w ma	any structural iso	omers have the formula C_6H_{14} ?
\mathbf{X}	Α	3	
	В	4	
	C	5	
\mathbf{X}	D	6	
			(Total for Question 14 = 1 mark)
Use	e thi	s space for any	rough working. Anything you write in this space will gain no credit.

SECTION B

Answer ALL the questions. Write your answers in the spaces provided.

18 Compounds A, B, C and D all have the molecular formula C₄H₈.
A, B and C each contain one double bond, but D does not.
A and B are geometric isomers of each other.

(a) Deduce a possible structure and name for each compound.

(4)

DO NOT WRITE IN THIS AREA

Possible structure of A	Possible structure of B
Name	Name
Possible structure of C	Possible structure of D
Name	Name
Name	Name

DO NOT WRITE IN THIS AREA

(b) The carbon–carbon double bond consists of a σ bond and a π bond.

Describe the difference between the σ bond and the π bond. Include a labelled diagram in your answer.

DO NOT WRITE IN THIS AREA

(c) Give **two** reasons why compounds **A** and **B** exist as geometric isomers.

(2)

(Total for Question 18 = 10 marks)

(2)

19 This question is about 2-Chloropropane.

 (a) 2-Chloropropane has a relative molecular mass of 78.5 g mol⁻¹. Chlorine has two common isotopes, ³⁵Cl and ³⁷Cl. There are three times more ³⁵Cl atoms than ³⁷Cl atoms. The main isotope of hydrogen is ¹H and that of carbon is ¹²C. The diagram shows a mass spectrum grid.

Draw the peaks for the molecular ions of 2-Chloropropane resulting from these isotopes.

ho	Chloropropane can be produced by reacting propane with chlorine in a molytic free radical reaction. $CH_3CH_2CH_3 + Cl_2 \rightarrow CH_3CHClCH_3 + HCl$ Show the initiation step of this reaction. Include appropriate arrows and the conditions necessary for this step.	(2)
(ii)	Using your answer to (b)(i), state what is meant by the terms homolytic and free radical. homolytic	(2)
	free radical	
(iii)	Suggest why this method has limited use in the synthesis of organic compounds.	(1)
·····		

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

12		P 7 3 4 5 5 A 0 1 2 2 0	
		(Total for Question 19 = 1	3 marks)
		this reaction.	(2)
	(ii)	Explain why only a small amount of 1-chloropropane is produced in	
			(4)
	(i)	Give the mechanism for this reaction. Include curly arrows and relevant dipoles and lone pairs.	
(c)	hy	Chloropropane can also be produced from the reaction of propene with drogen chloride. Give the mechanism for this reaction. Include curly arrows and relevant dipoles and lone pairs.	(4)

BLANK PAGE

) This a					
·I	uestion is abou	ut magnesium, magnesium (oxide and m	agnesium sulfate.	
re	ative atomic n	nesium contains three isoto nass of 24.32. he relative abundances of tv			
		Mass number	24	25	
		Relative abundance / %	78.99	10.00	
	third isotope Give your ans	relative abundance and her swer to the appropriate num ow all your working.			

(iii) State which of these isotopes would be deflected most in a mass spectrometer. Justify your answer.

(1)

(b) Magnesium oxide and magnesium sulfate are ionic compounds. (i) Draw a dot-and-cross diagram to show the bonding in magnesium oxide, MgO. Show outer electrons only. (2) (ii) The melting temperatures of magnesium oxide and magnesium sulfate are 2852°C and 1124°C respectively. Explain why the melting temperature of magnesium oxide is significantly higher than that of magnesium sulfate. (2)

15

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

		Electrical c	conductivity	
	State	Magnesium	Magnesium oxide	
	solid	high	low	
	liquid	high	high	
Explain the two substa	e similarities and differen ances.	ces in the electrical o	conductivity of the	(2)
d) Magnesiur	n sulfate can be made by	/ reacting magnesiur	n with dilute sulfuric a	icid.
	n equation for the reacti e state symbols in your a			(2)
(ii) Give tv	vo observations you wou	ıld make when the re	eaction is taking place.	(2)

P 7 3 4 5 5 A 0 1 6 2 0

DO NOT WRITE IN THIS AREA

(e) Hydrated crystals of magnesium sulfate, MgSO₄·7H₂O, can be made by reacting magnesium with sulfuric acid. In an experiment, magnesium was added to 30.0 cm³ of 0.500 mol dm⁻³ sulfuric acid.	
$[M_r \text{ value: MgSO}_4 \cdot 7H_2 \text{O} = 246.4 A_r \text{ value: Mg} = 24.3]$	
(i) Calculate the number of moles of sulfuric acid used in this experiment. (1)	
(ii) Calculate the mass of magnesium needed to react with the sulfuric acid. (1)	
(iii) Give a reason why slightly more than this mass of magnesium was used. (1)	
 (iv) State how the magnesium sulfate solution could be separated from the mixture produced in this experiment. (1) 	
 (v) The magnesium sulfate solution was allowed to crystallise. The crystals were dried and weighed. The mass of the hydrated crystals, MgSO₄·7H₂O, was 2.78 g. Calculate the percentage yield in this experiment. 	
(Total for Question 20 = 22 marks)	
	17

21	Boric acid is a white solid often used as an antiseptic.		
	(a) Boric acid contains 17.48% by mass of boron, 77.67% of oxygen and the remainder is hydrogen. The molar mass of boric acid is 61.8 g mol^{-1} . [A_r values: $H = 1$ $B = 10.8$ $O = 16$]		DO NO
	Show that the molecular formula of boric acid is H_3BO_3 .		TWR
	You must show all your working.	(4)	DO NOT WRITE IN THIS AREA
	 (b) The formula of boric acid can also be written as B(OH)₃. (i) Draw a dot-and-cross diagram for this molecule. Show outer electrons only. 	(3)	DO NOT WRITE IN THIS AREA
	(ii) Suggest a value for the O—B—O bond angle. Justify your answer.	(2)	DO NOT WRITE IN THIS AREA
	(Total for Question 2	X	AREA
		l 🖇	

- **22** The density of an unknown gas is $0.656 \,\mathrm{g}\,\mathrm{dm}^{-3}$ at 20°C and 101000 Pa. $[pV = nRT R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}]$
 - (a) Calculate the molar mass of the unknown gas.

(5)

DO NOT WRITE IN THIS AREA

(b) The unknown gas is a hydrocarbon.

Give the name or formula for the unknown gas using your answer to (a).

(1)

(Total for Question 22 = 6 marks)

TOTAL FOR SECTION B = 60 MARKS **TOTAL FOR PAPER = 80 MARKS**

	0 (8)	(18) 4.0 He	helium 2	20.2	Ne	10	39.9	Ar argon	18	83.8	א ד	krypton 36	131.3	Xe	xenon 54	[222]	Rn	radon 86		ç								
	٢	L	(17)	19.0	F fluorine	6	35.5	CI chlorine	17	6.97		aromine 35	126.9	Ι	iodine 53	[210]	At	astatine 85		Elements with atomic numbers 112-116 have been reported		175	Ľ	lutetium 71	[257]	Ŀ	lawrencium 103	DO NOT WRITE IN THIS AREA
	9		(16)	16.0	0	8	32.1	S sulfur	16	79.0	Se	selenium 34	127.6	Te	tellurium 52	[209]	Ъ	polonium 84		116 have b	ILICALED	173	٩: ۲	ytterbium 70	[254]	o No	nobelium 102	WRITEI
	ß		(15)	14.0		7	31.0	P phosphorus	15	74.9	As	arsenic 33	121.8	Sb	antimony 51	209.0	Bi	bismuth 83		mbers 112-	טער חטר זעווץ מענחפחנוכמנפט	169	E T	thulium 69	[256]	ΡW	mendelevium 101	N THIS /
	4		(14)	12.0	Carbon Carbon	6	28.1	Si silicon		72.6	e G	germanium 32	118.7	Sn	tin 50	207.2	Pb	lead 82		atomic nur	DUL NOL T	167	ц:	erbium 68	[253]	Fm	fermium 100	AREA
	m		(13)	10.8	B	5	27.0	Al aluminium	13	69.7	Ga	gallium 31	114.8	l	indium 49	204.4	Ħ	thallium 81		ients with		165	H o	notmium 67	[254]	Es	einsteinium 99	
ents									(12)	65.4	Zn	zinc 30	112.4	bCd	cadmium 48	200.6	Hg	mercury 80				163	کر آ	dysprosium 66	[251]		californium 98	
The Periodic Table of Elements									(11)	63.5	Cu	copper 29	107.9	Ag	silver 47	197.0	ΡN	gold 79	[272]	Rg	roenigenium 111	159		terbium 65	[245]	BK	berkelium 97	DO NOT WRITE IN THIS AREA
le of									(01)	58.7	ż	nickel 28	106.4	РЧ	palladium 46	195.1	Pt	platinum 78		S S	metrienum damstadtium 109 110	157		gadoumum 64	[247]	с С	aurium 96	WRITE
c Tab									(6)	58.9	ပိ	cobalt 27	102.9	Rh	rhodium 45	192.2	Ir	iridium 77	[268]	Mt	methenum 109	152	Eu	europium 63	[243]		americium 95	IN THIS
riodi		1.0 T	1						(8)	55.8	Fe		101.1		ruthenium 44	190.2	0s	osmium 76	[277]	H	108	150		62	[242]		plutonium 94	AREA
he Pe									(2)	54.9	٩N	chromium manganese 24 25	[98]	Ч	technetium 43	186.2	Re	rhenium 75	-		107	[147]	Pm	praceodymum neodymum prometnium 59 60 61	[237]	dN	neptunium 93	
Η				mass	lod	number			(9)	52.0	ۍ ا	chromium 24	95.9	Wo	molybdenum 42	183.8	3	tungsten 74	[266]	Sg	seaborgium 106	144	PZ	neodymium 60	238		uranium 92	
			Key	relative atomic mass	atomic symbol	atomic (proton) number			(2)	50.9	>	vanadium 23	92.9	qN	niobium 41	180.9	Ta	tantalum 73			aubnium 105	141	۲.	praseodymium 59	[231]	Pa	protactinium 91	DONO
				relat	ato	atomic			(4)	47.9	Ϊ	titanium 22	91.2	Zr	zirconium 40	178.5		hafnium 72	[261]	ָּרַג	rutherfordium 104	140	Ce	cerium 58	232	Ę	thorium 90	TWRIT
				_			T		(3)	45.0	Sc	scandium 21	88.9	≻	yttrium 39	138.9	La*	lanthanum 57	[227]	Ac*	actinium 89		es					DO NOT WRITE IN THIS AREA
	2		(2)	9.0	Be	4	24.3	Mg magnesium	12	40.1		calcium 20	87.6		strontium 38	137.3	Ba	barium 56	[226]	Ra	88		* Lanthanide series			* Actinide series		S AREA
	-		(1)	6.9	Li lithium	3	23.0	Na sodium	11	39.1	¥	potassium 19	85.5	Rb	rubidium 37	132.9	പ	caesium 55	[223]	Fr 	rrancium 87		* Lant			* Actir		

P 7 3 4 5 5 A 0 2 0 2 0