Please check the examination details belo	w before entering your candidate information
Candidate surname	Other names
Centre Number Candidate Nu Centre Nu	national Advanced Level
Thursday 18 Januar	y 2024
Afternoon (Time: 1 hour 20 minutes)	Paper reference WCH16/01
Chemistry International Advanced Le	◆
UNIT 6: Practical Skills in	
You must have: Scientific calculator, ruler	Total Marks

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.

Information

- The total mark for this paper is 50.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

Answer ALL the questions. Write your answers in the spaces provided.

- 1 A student carried out some tests on four aqueous solutions, labelled **A**, **B**, **C** and **D**. Each solution contained one cation and one anion.
 - (a) Complete the table.

	Test	Observation	Inference
(i)	Dilute aqueous ammonia was added drop-by-drop to 4 cm ³ of A until there was no further change	A pale blue precipitate formed which dissolved to give a deep blue solution	The cation in A is
(ii)	Dilute aqueous ammonia was added drop-by-drop to 4 cm ³ of B until there was no further change	A white precipitate formed with the first few drops This precipitate	The formula of the white precipitate is
	iu thei change	dissolved in excess ammonia to give a colourless solution	The formula of the complex ion which forms in the colourless solution is
(iii)	Dilute aqueous sodium hydroxide was added drop-by-drop to 4 cm ³ of C until there was no further change		The cation in C is Fe ³⁺
(iv)	Dilute aqueous sodium hydroxide was added drop-by-drop to 4 cm ³ of D until there was no further change	An off-white precipitate formed which did not dissolve in excess but darkened when left to stand	The cation in D is

(v) Name the type of reaction which results in the darkening of the off-white precipitate in (a)(iv).

(1)

	(Total for Question 1 = 12 ma	rks)
Su	uggest a possible anion present in D .	(1)
A t fol An	ne student researched further tests for the anion present in D . test was found which involved the addition of sodium hydroxide solution ollowed by aluminium and then heating strongly. mmonia gas was given off.	
Giv	ive the formula of the compound in solution C .	(1)
	ne student tested for the anion in C by adding acidified barium nitrate solution nd observed a white precipitate.	
		(3)
	ate why the student was not certain and outline a further test which could be arried out to confirm the presence of both these anions.	(2)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

2	 This question is about the identification of four different organic compounds, W, X, Y and Z. The molecules of each compound contain a total of three carbon atoms and only one functional group. (a) A sample of W gave a positive result with Tollens' reagent. Give the positive result and the displayed formula of W. 	(2)	DO NOT WRITE IN THIS AREA
	 (b) A sample of X produced a sweet-smelling substance when warmed with ethanoic acid and a few drops of concentrated sulfuric acid. (i) Name the functional group in X identified by this test. 	(1)	DO NOT WRITE IN THIS
	(ii) There are only two peaks in the ¹³ C NMR spectrum of X . Draw the displayed formula of X , labelling the carbon environments.	(2)	E IN THIS AREA
			DO NOT WRITE IN THIS AREA

A sample of Y gave a positive result when warmed with an alkaline so of iodine.	lution
(i) Give two observations of a positive result from this test.	(2)
(ii) Identify Y by name or formula.	(1)
) A sample of Z produced bubbles when sodium carbonate solution wa Draw the displayed formula of Z , showing all the bonds.	
	(1)
(Total for Questi	on 2 = 9 marks)

 A student was given a 0.0200 mol dm⁻³ solution of a to prepare solutions containing vanadium ions in d to confirm the results. The student decided to use the three different redu 	ifferent oxidation states, and then
zinc sulfur diox	kide tin
(a) The student pipetted 25.0 cm ³ of the vanadate(about 60 cm ³ of 1 mol dm ⁻³ sulfuric acid.	v) solution into a flask and added
About 5 g of granulated zinc was added to the f	lask.
Cotton wool was used to stopper the flask, whic for 30 minutes.	h was heated and gently boiled
(i) Suggest why only an approximate volume o	f sulfuric acid was used. (1)
 (ii) The cotton wool helps to prevent the reoxid allow the escape of hydrogen gas. State why hydrogen gas was produced. You may include an equation in your answer 	
(iii) Give a possible reason why the flask was hea	ated. (1)

DO NOT WRITE IN THIS AREA

(iv)	The student concluded that zinc had reduced the vanadium(V) to the vanadium(II) oxidation state. Explain the sequence of colours that the student would have seen to reach	
	this conclusion. Link each colour to the vanadium oxidation state.	(3)
not The soc	e student was told that sulfur dioxide is toxic and that cylinders of the gas are t recommended for use in schools. e student was advised to prepare it within the reaction mixture from dium sulfate(IV) and hydrochloric acid. Suggest why sulfur dioxide is advised to be prepared in this way.	(1)
(ii)	Write the equation for the generation of sulfur dioxide from the reaction between sodium sulfate(IV) (Na ₂ SO ₃) and hydrochloric acid. State symbols are not required.	(1)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(c) After using tin as the reducing agent, the student carried out a titration with acidified potassium manganate(VII) to find out how far the vanadium had been reduced.

(i) State a suitable method to remove the unreacted tin.

(1)

- (ii) Information about the experiment is shown.
 - 25.0 cm^3 of $0.0200 \text{ mol dm}^{-3}$ ammonium vanadate(V) was reduced by tin
 - 20.00 cm³ of 0.0100 mol dm⁻³ potassium manganate(VII) was required to oxidise the vanadium back to its original oxidation state
 - the manganate(VII) half-equation is $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$

Deduce the vanadium ion oxidation state after the reduction by tin. You must show your working.

(4)

(iii) Explain the effect on the titre	of leaving the tin in the reaction mixture. (2)
	(Total for Question 3 = 15 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

4 This question is about the preparation of phenylethanamide by the reaction between phenylammonium chloride and ethanoic anhydride.

Data

Compound	Molar mass / g mol ⁻¹	Density of liquid / g cm ⁻³	Melting temperature / °C
phenylammonium chloride	129.5	_	196–198
ethanoic anhydride	102.0	1.08	_
phenylethanamide	135.0	_	113–115

Outline procedure

- Step **1** Dissolve 1.0 g of phenylammonium chloride in 30 cm³ of deionised water in a conical flask.
- Step 2 Dissolve 6.0 g of sodium ethanoate in 25 cm³ of deionised water in a separate conical flask.
- Step **3** Carefully add 2.0 cm³ of ethanoic anhydride to the phenylammonium chloride solution and stir until all the ethanoic anhydride has dissolved. Then add the solution of sodium ethanoate and continue to stir for a further 3 minutes.
- Step **4** Collect the impure sample of phenylethanamide by filtration under reduced pressure.
- Step **5** Recrystallise the phenylethanamide using deionised water.
- Step 6 Determine the melting temperature of the crystals of phenylethanamide.

(a) The use of phenylammonium chloride is preferred to the use of phenylamine in this preparation.

Compound	Compound State at room temperature	
phenylamine	liquid	
phenylammonium chloride	solid	

Suggest, by referring to **both** columns of data in the table, **two** reasons why it is preferable to use phenylammonium chloride.

(2)

(b) Show, by calculation, that ethanoic anhydride is in excess in this preparation.

(3)

- (c) In Step 4, a Büchner flask and funnel were used for suction filtration.
 - (i) The filter paper used should fit in the funnel and lie flat on the base of the Büchner funnel rather than curl up the sides of the funnel.

Explain why it is important to place the filter paper in this way.

(2)

(ii) Explain why the solid collected in Step **4** is washed with **a small volume** of **cold** water.

DO NOT WRITE IN THIS AREA

(d) In Step 5 the recrystallisation of phenylethanamide involves hot filtration. State the purpose of this filtration. (1) (e) Give the **two** effects of impurities on the melting temperature range of phenylethanamide. (1)

Explain why Peak 1 cannot be used to identify the spectrum as being produced by phenylethanamide but Peak 2 can. Include reference to the infrared data in your answer.	(3)
(Total for Question 4 = 14	marks)
TOTAL FOR PAPER = 50 M	MARKS

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

	0 (8)	(10) 4.0 helium 2	20.2 Neon 10	39.9 Ar argon 18	83.8 Krypton 36	131.3 Xe xenon 54	[222] Rn 86	ed l		
	7	(21)	19.0 F fluorine 9	35.5 Cl chlorine 17	79.9 Br bromine 35	126.9 iodine 53	[210] At astatine 85	Elements with atomic numbers 112-116 have been reported but not fully authenticated	175 Lu lutetium 71 [257] Lr Lr 103	3
	9	(16)	16.0 O oxygen 8	32.1 S sulfur 16	79.0 Se selenium 34	127.6 Te tellurium 52	[209] Po Polonium 84	-116 have b nticated	173 Ybterbium 70 [254] No nobelium 102	771
	S	(15)	14.0 N nitrogen 7	31.0 P phosphorus 15	74.9 AS arsenic 33	121.8 Sb antimony 51	209.0 Bi bismuth 83	tomic numbers 112-116 hav but not fully authenticated	169 Tm thutlium 69 [256] Md mendelevium 101	2
	4	(14)	12.0 C carbon 6	28.1 Si silicon	72.6 Ge germanium 32	118.7 Sn 50	207.2 Pb tead 82	atomic nu but not f	167 Er erbium 68 [253] fm fermium 100	3
	ĸ	(13)	10.8 B boron 5	27.0 Al aluminium 13	69.7 Ga ^{gallium} 31	114.8 In indium 49	204.4 Tl thallium 81	nents with	163165DyHodysprosiumholmiumdysprosium66666767E5CfEscaliforniumeinsteinium9899	
ients				(12)	65.4 Zn ^{zinc} 30	112.4 Cd cadmium 48	200.6 Hg ^{mercury} 80		163 Dy dysprosium 66 [251] Cf catifornium 98	2
Elem				(11)	63.5 Cu copper	107.9 Ag silver 47	197.0 Au ^{gold} 79	[272] Rg 111	159 Tb terbium 65 [245] Bk berkelium 97	;
le of			(10)	58.7 Ni nickel 28	106.4 Pd palladium 46	195.1 Pt platinum 78	[271] [272] Ds Rg damstactium roentgenium 110 111	157 Gd 84 64 [247] Cm 96	2	
c Tab				(6)	58.9 Co cobalt 27	E	192.2 Ir iridium 77	[268] Mt meitnerium 109	152 Eu europium 63 [243] Am americium 95	2
riodi		1.0 hydrogen 1		(8)	55.8 Fe iron 26	101.1 Ru ruthenium	190.2 Os osmium 76	[277] HS hassium 108	150 Sm samarium 62 [242] Pu plutonium 94	ξ
The Periodic Table of Elements			ĺ)	54.9 Mn manganese 75	[98] TC technetium 43	186.2 Re rhenium 75	[264] Bh bohrium 107	[147] Pm promethium 61 [237] NP neptunium 93	2	
F			mass bol) (9)	52.0 Cr chromium 24	95.9 [98] Mo TC motybdenum technetium 42 43	183.8 V tungsten 74	[266] Sg seaborgium 106	144 neodymium 60 U U 92	•
		Key	relative atomic mass atomic symbol name atomic (proton) number	(5)	50.9 V vanadium 23	92.9 Nb niobium 41	180.9 Ta tantalum 73	[262] Db dubnium 105	141 Pr 59 [231] Pa protactinium 91	;
			relati ato atomic	(4)	47.9 Ti titanium 22	91.2 Zr zirconium 40	178.5 Hf hafnium 72	[261] Rf rutherfordium 104	140 Cecrium 58 232 232 Th thorium 90	ş
				(3)	45.0 Sc scandium 21	о Е	138.9 La* lanthanum 57	[227] AC* actinium 89		
	2	(2)	9.0 Be berytlium 4	24.3 Mg magnesium 12	40.1 Ca calcium 20	87.6 Sr strontium 38	137.3 Ba barium 56	[226] Ra radium 88	 Lanthanide series Actinide series 	
	-	(1)	6.9 Li lithium 3	23.0 Na sodium 11	39.1 K potassium 19	85.5 Rb rubidium 37	132.9 Cs caesium 55	[223] Fr francium 87	 Lanth Actini 	

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

P 7 4 3 2 6 A 0 1 6 1 6