| Please check the examination details below before entering your candidate information |                             |  |  |  |  |  |
|---------------------------------------------------------------------------------------|-----------------------------|--|--|--|--|--|
| Candidate surname                                                                     | Other names                 |  |  |  |  |  |
| Centre Number Candidate Nu                                                            | mber                        |  |  |  |  |  |
| Pearson Edexcel Inter                                                                 | national Advanced Level     |  |  |  |  |  |
| Monday 8 January 2                                                                    | Monday 8 January 2024       |  |  |  |  |  |
| Morning (Time: 1 hour 45 minutes)                                                     | Paper<br>reference WCH14/01 |  |  |  |  |  |
| Chemistry                                                                             | • •                         |  |  |  |  |  |
| International Advanced Le                                                             | vel                         |  |  |  |  |  |
| UNIT 4: Rates, Equilibria and Further Organic                                         |                             |  |  |  |  |  |
| Chemistry                                                                             |                             |  |  |  |  |  |
| You must have:<br>Scientific calculator, Data Booklet, rule                           | r Total Marks               |  |  |  |  |  |

## Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.

## Information

- The total mark for this paper is 90.
- The marks for each question are shown in brackets
   use this as a guide as to how much time to spend on each question.
- In the question marked with an **asterisk** (\*), marks will be awarded for your ability to structure your answer logically, showing how the points that you make are related or follow on from each other where appropriate.
- A Periodic Table is printed on the back cover of this paper.

# Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨







| 2  |    |   |    |    |     |    |  |
|----|----|---|----|----|-----|----|--|
|    |    |   |    |    |     |    |  |
|    |    |   |    |    |     |    |  |
|    |    |   |    |    |     |    |  |
|    |    |   |    |    |     |    |  |
|    |    |   |    |    |     |    |  |
|    |    |   |    |    |     |    |  |
|    |    |   |    |    |     |    |  |
|    |    |   |    |    |     |    |  |
|    | ٩, |   |    |    |     |    |  |
|    |    | N | 4  | 2  | 2   | 2  |  |
|    |    | 4 | P  | 2  | 7   |    |  |
| 2  | 1  | д | 6  | 2  | 2   | ŋ  |  |
|    |    |   | C  | 2  | 5   |    |  |
|    | 2  | S | ø  | ę  | 9   | 6  |  |
|    |    | А | Ŀ  |    |     |    |  |
|    |    | 3 | 9  | ÷  | ø   | 2  |  |
| ٩, | 2  |   |    |    |     |    |  |
|    |    | 6 | è  | ń  | è   | ×. |  |
| 2  |    |   | ζ  | 2  | 2   | 7  |  |
| 5  |    | Ч |    | ñ  |     | 'n |  |
|    |    |   | 2  | 6  | 2   |    |  |
|    |    | À | 2  | 7  | 2   | 5  |  |
| N  |    | Ч | k  | 2  | 4   |    |  |
|    |    |   | 7  | e  | 2   | c  |  |
| 2  |    | 2 | ς. | 2  | ς.  |    |  |
|    |    | 3 | 7  | -  | 7   |    |  |
|    |    |   |    |    |     | 7  |  |
| 2  |    |   | S  | 4  | ŝ   | ø  |  |
|    |    | 3 |    |    | Ζ   | 2  |  |
|    |    | 4 | è  | ú  | ş   | ę  |  |
| 2  | 5  | 2 | -  | 5  | Ŀ,  | ti |  |
|    |    | 5 | 4  |    | 6   | -  |  |
|    |    | c | 7  |    | 7   |    |  |
|    |    | A | μ  | ۶  | e   | ø  |  |
|    |    | à | 6  | 2  | 6   | 2  |  |
| 5  | 2  |   | 7  |    |     | 5  |  |
|    |    | á | è  | ×. | è   |    |  |
|    |    |   |    |    |     | 1  |  |
| 5  |    | S | ú  | S. | ×.  | 5  |  |
|    |    | d | r  |    |     |    |  |
| 2  |    | 2 | ٩  | 2  |     | 7  |  |
| S  |    |   |    |    |     |    |  |
|    |    | ø | ş  | ę  | ş   | ę  |  |
| 2  |    | À | ĥ  | ei | ĥ   | ×. |  |
| 5  |    |   | Ζ. | 2  | 2   | P  |  |
|    |    | 9 |    | 6  | ÷   | ú  |  |
| 2  | 5  | 2 |    |    |     |    |  |
|    |    |   |    |    |     | Ń  |  |
|    | 2  | ą | ,  | -  | 7   |    |  |
|    | ١. |   |    |    |     | Р  |  |
|    |    | 3 | 4  |    | pi  | 8  |  |
| 5  | 2  | 5 | 2  |    | ν   |    |  |
|    |    | ð | 8  | e  | -   | e  |  |
| 2  |    | 3 | ń  | Ŕ  | ń   | R  |  |
| 5  |    | S | ż  | S  | 4   | 2  |  |
|    |    | d | b  | 4  | r   |    |  |
|    |    | 2 | ų  |    |     | 9  |  |
|    |    |   |    |    |     |    |  |
|    |    | đ | ÷  | 6  | 2   | 5  |  |
|    |    |   | 9  |    |     | 3  |  |
| >  |    |   |    |    |     |    |  |
| ζ  | Ş  | ĥ | ę  |    | 7   |    |  |
| ξ  | ζ  | ļ | 5  | 2  | ζ   | 2  |  |
| 2  | ξ  | 2 | Ś  | ź  | ζ   | j  |  |
| Ş  | Ş  | ļ |    | 2  | Z S | j  |  |
| Ş  | 2  |   |    | 2  |     | j  |  |
| Ş  |    |   |    |    |     |    |  |
| Ş  |    |   |    |    |     | )  |  |

(1)

(1)

#### **SECTION A**

Answer ALL the questions in this section.

You should aim to spend no more than 20 minutes on this section.

For each question, select one answer from A to D and put a cross in the box  $\boxtimes$ . If you change your mind, put a line through the box  $\boxtimes$  and then mark your new answer with a cross  $\boxtimes$ .

1 The equation for a reaction is shown.

 $A(g) + 2B(g) \implies 3C(s) + 4D(g)$ 

(a) Some collisions between reactant molecules do not lead to the formation of products.

What is the best explanation for this?

- A the reactant concentrations are too low
- **B** the collisions do not have sufficient energy
- C the reaction is at equilibrium
- **D** the molecules do not collide in the correct ratio

(b) What are the units of the equilibrium constant,  $K_p$ , for this reaction?

| X            | Α | atm                            | (1)  |
|--------------|---|--------------------------------|------|
| $\times$     | В | atm <sup>-1</sup>              |      |
| $\mathbf{X}$ | С | atm <sup>4</sup>               |      |
| $\mathbf{X}$ | D | atm <sup>-4</sup>              |      |
|              |   | (Total for Outstion 1 - 2 may) | ekc) |

| 2 | Nitrogen(V) oxide, N <sub>2</sub> O <sub>5</sub> , decomposes in a first order reaction.              |
|---|-------------------------------------------------------------------------------------------------------|
|   | At 45 °C, the half-life for this reaction is 1400 s.                                                  |
|   | In an experiment, the initial concentration of nitrogen(V) oxide is $1.0  \text{mol}  \text{dm}^{-3}$ |

What is the concentration, in mol  $dm^{-3}$ , of nitrogen(V) oxide after 4200 s?

- 🖾 **A** 0.875
- **■ B** 0.500
- ☑ C 0.250
- ☑ **D** 0.125

(Total for Question 2 = 1 mark)



3 Ammonia is produced by the reaction of nitrogen with hydrogen in the presence of an iron catalyst.  $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$  $\Delta H = -92 \,\mathrm{kJ}\,\mathrm{mol}^{-1}$ (a) Which of the following statements about the catalyst is **not** correct? (1)  $\times$ **A** it lowers the activation energy of the reaction  $\times$ **B** it has no effect on the equilibrium constant for the reaction **C** it alters the enthalpy change of the reaction  $\times$  $\times$ **D** it reduces the energy cost of the reaction (b) Which conditions favour the highest percentage of ammonia in an equilibrium mixture from identical amounts of nitrogen and hydrogen? (1) $\mathbf{X}$ **A** a temperature of 400 K and a pressure of 200 kPa  $\times$ **B** a temperature of 400 K and a pressure of 200 atm  $\mathbf{X}$ **C** a temperature of 400 °C and a pressure of 200 kPa X **D** a temperature of 400 °C and a pressure of 200 atm (Total for Question 3 = 2 marks) The equations for three reactions involving hydrogen are shown. 4 J  $N_2(q) + 3H_2(q) \rightarrow 2NH_3(q)$ Κ  $N_2(q) + 2H_2(q) \rightarrow N_2H_4(l)$ L  $I_2(s) + H_2(q) \rightarrow 2HI(q)$ What is the order of **increasing** standard entropy change of the system,  $\Delta S^{\ominus}_{system}$ , for these reactions?  $\mathbf{X}$ **A** J, K, L X **B** K, L, J X **C** K, J, L X **D** L, K, J (Total for Question 4 = 1 mark) Use this space for any rough working. Anything you write in this space will gain no credit.



3

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

 $CH_4(g) + 2H_2O(g) \rightarrow CO_2(g) + 4H_2(g)$ The standard molar entropies of the reactants and products are given in the table. Substance  $S^{\oplus}/JK^{-1}mol^{-1}$ 

Methane reacts with steam to produce carbon dioxide and hydrogen.

| Substance           | $S^{\ominus}/JK^{-1}mol^{-1}$ |
|---------------------|-------------------------------|
| CH <sub>4</sub> (g) | 186                           |
| $H_2O(g)$           | 189                           |
| CO <sub>2</sub> (g) | 214                           |
| H <sub>2</sub> (g)  | 131                           |
|                     |                               |

The value of  $\Delta S^{\oplus}_{system}$  for this reaction, in  $J\,K^{\!-\!1}\,mol^{\!-\!1}$  , is

**■ A** -174

5

- **B** −30
- **C** +30
- ☑ D +174

# (Total for Question 5 = 1 mark)

6 What are the signs of the entropy changes at 373 K when water vapour condenses?

 $H_2O(g) \rightarrow H_2O(l)$ 

|   |   | $\Delta S_{ m system}$ | $\Delta S_{ m surroundings}$ |
|---|---|------------------------|------------------------------|
| X | Α | positive               | positive                     |
| X | В | positive               | negative                     |
| × | С | negative               | positive                     |
| × | D | negative               | negative                     |

(Total for Question 6 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.



| $\times$     |     | Α    | neutral with a pH of 7.0                                                          |
|--------------|-----|------|-----------------------------------------------------------------------------------|
| X            |     | В    | neutral with a pH of 6.6                                                          |
| X            |     | С    | acidic with a pH of 6.6                                                           |
| X            |     | D    | alkaline with a pH of 7.4                                                         |
|              |     |      | (Total for Question 7 = 1 mark)                                                   |
| Ea           | uin | nola | ar solutions of four acids are prepared. Which solution has the <b>lowest</b> pH? |
|              |     |      | ronegativity values from the Data Booklet.                                        |
| $\mathbf{X}$ |     |      | CH <sub>3</sub> COOH                                                              |
| $\mathbf{X}$ |     | В    | CH2CICOOH                                                                         |
| ×            |     | с    | -<br>CH₂BrCOOH                                                                    |
| $\mathbf{X}$ |     | D    | CH <sub>2</sub> ICOOH                                                             |
|              |     |      | (Total for Question 8 = 1 mark)                                                   |
| 6            |     |      |                                                                                   |
| 50           | me  | eq   | uations for acid-base equilibria are shown.                                       |
|              |     |      | $H_3PO_4 + H_2O \implies H_2PO_4^- + H_3O^+$                                      |
|              |     |      | $H_2PO_4^- + H_2O \implies HPO_4^{2-} + H_3O^+$                                   |
|              |     |      | $HPO_4^{2-} + H_2O \implies PO_4^{3-} + H_3O^+$                                   |
| Wł           | nat | is t | he conjugate acid of HPO <sub>4</sub> <sup>2–</sup> ?                             |
| X            |     | A    | H <sub>3</sub> PO <sub>4</sub>                                                    |
| X            |     | В    | $H_3O^+$                                                                          |
| ×            |     | C    | $H_2PO_4^-$                                                                       |
| ×            |     | D    | PO <sub>4</sub> <sup>3-</sup>                                                     |
|              |     |      | (Total for Question 9 = 1 mark)                                                   |
|              |     |      | space for any rough working. Anything you write in this space will gain no credit |



DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

|          |         | $K_{\rm w} = 1.00 \times 10^{-14} {\rm mol}^2 {\rm dm}^{-6}$                          |              |
|----------|---------|---------------------------------------------------------------------------------------|--------------|
| A        | 14.0    |                                                                                       |              |
| B        | 13.6    |                                                                                       |              |
| ⊠ C      | 13.3    |                                                                                       |              |
| ⊠ D      | 12.6    |                                                                                       |              |
|          |         | (Total for Question 10 = 7                                                            | 1 mark)      |
| 1 Carvon | e is an | oil used in aromatherapy.                                                             |              |
|          |         |                                                                                       |              |
| (a) Carv | vone s  | hows                                                                                  |              |
| $\times$ | Α       | geometric and optical isomerism                                                       | (1)          |
| X        | В       | geometric isomerism only                                                              |              |
| $\times$ | С       | optical isomerism only                                                                |              |
| $\times$ | D       | neither geometric nor optical isomerism                                               |              |
| (b) Whi  | ch rea  | gent gives a positive result when added to carvone?                                   | (1)          |
| $\times$ | Α       | ammoniacal silver nitrate (Tollens' reagent)                                          | ц <i>- у</i> |
| X        | В       | aqueous sodium carbonate                                                              |              |
| ×        | C       | iodine in the presence of an alkali                                                   |              |
| ×        | D       | 2,4-dinitrophenylhydrazine                                                            |              |
|          |         | y peaks would be expected to appear in a carbon-13 ( <sup>13</sup> C) NMR of carvone? | (1)          |
| X        | Α       | 10                                                                                    | (1)          |
| ×        | В       | 9                                                                                     |              |
| $\times$ | С       | 8                                                                                     |              |
| $\times$ | D       | 7                                                                                     |              |

| _            |             | ich two reactants could $CH_3(CH_2)_2COO(CH_2)_4CH_3$ be made? |
|--------------|-------------|----------------------------------------------------------------|
| $\times$     | Α           | butanoic acid and pentan-1-ol                                  |
| $\mathbf{X}$ | В           | butanoyl chloride and butan-1-ol                               |
| $\mathbf{X}$ | C           | butanal and pentan-1-ol                                        |
| ×            | D           | pentanoic acid and butan-1-ol                                  |
|              |             | (Total for Question 12 = 1 mark)                               |
| deso         |             | d as<br>elimination                                            |
| ×            | Α           | elimination                                                    |
| $\mathbf{X}$ | В           | oxidation                                                      |
| $\mathbf{X}$ | С           | reduction                                                      |
| $\mathbf{X}$ | D           | substitution                                                   |
|              |             | (Total for Question 13 = 1 mark)                               |
|              | -h si       | ibstance is the least soluble in water?                        |
| 4 Whi        |             |                                                                |
| 4 Whi        |             | propanal                                                       |
|              |             | propanal<br>propan-1-ol                                        |
| $\times$     | Α           | propan-1-ol                                                    |
| $\boxtimes$  | A<br>B<br>C | propan-1-ol                                                    |

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA



(1)



**15** (a) The mass spectrum of compound **X** shows a large peak at m/z = 59.

This peak is due to the fragmentation of the molecular ion.

Which compound is most likely to be X?

 $\times$ 2-methylpropan-2-ol Α

#### **SECTION B**

#### Answer ALL the questions. Write your answers in the spaces provided.

**16** A group of students investigated the kinetics of a 'clock' reaction.

The reaction investigated was that between hydrogen peroxide and iodide ions in the presence of acid.

**Reaction 1**  $H_2O_2(aq) + 2H^+(aq) + 2I^-(aq) \rightarrow 2H_2O(l) + I_2(aq)$ 

In this 'clock' reaction, a fixed volume of aqueous sodium thiosulfate,  $Na_2S_2O_3$ , and a small amount of starch were added to the reaction mixture.

The added thiosulfate ions react with the iodine produced in **Reaction 1**.

**Reaction 2**  $2S_2O_3^{2-}(aq) + I_2(aq) \rightarrow S_4O_6^{2-}(aq) + 2I^{-}(aq)$ 

When all the thiosulfate ions have reacted, the presence of iodine is detected by the formation of a starch-iodine complex. The students recorded the time taken for this complex to form.

(a) (i) State the final colour of the mixture containing the starch-iodine complex.

(1)

(ii) Under appropriate conditions, the reciprocal of time can be used as an approximate measure of the initial rate of the reaction.

Explain why the concentration of the sodium thiosulfate must be low compared with the initial concentrations of the other reagents.

(2)



DO NOT WRITE IN THIS AREA

(b) Four reaction mixtures, with different initial concentrations of hydrogen peroxide, hydrogen ions and iodide ions, were prepared.

| Mixture | $[H_2O_2] / mol  dm^{-3}$ | $[H^+]$ / mol dm <sup>-3</sup> | $[I^-]$ / mol dm <sup>-3</sup> | Time<br>/ s | 1 ÷ time<br>/ s <sup>-1</sup> |
|---------|---------------------------|--------------------------------|--------------------------------|-------------|-------------------------------|
| 1       | $5.4 	imes 10^{-2}$       | $1.7 	imes 10^{-5}$            | $8.2 \times 10^{-3}$           | 195         | 5.13 × 10 <sup>-3</sup>       |
| 2       | 2.7 × 10 <sup>-2</sup>    | $1.7 	imes 10^{-5}$            | 8.2 × 10 <sup>-3</sup>         | 391         | $2.56 	imes 10^{-3}$          |
| 3       | 5.4 × 10 <sup>-2</sup>    | $1.7 	imes 10^{-5}$            | $1.6 	imes 10^{-2}$            | 97          | 1.03 × 10 <sup>-2</sup>       |
| 4       | 5.4 × 10 <sup>-2</sup>    | $1.7 	imes 10^{-4}$            | 8.2 × 10 <sup>-3</sup>         | 204         | 4.90 × 10 <sup>-3</sup>       |

Each mixture had the same volume and contained the same amount of sodium thiosulfate and starch.

(i) Use the results in the table to deduce the order of **Reaction 1** with respect to hydrogen peroxide, hydrogen ions and iodide ions.
 Justify each answer by referring to relevant data from the table.

Hydrogen peroxide

Hydrogen ions

(3)



 (iv) Calculate the rate of reaction, in mol dm<sup>-3</sup> s<sup>-1</sup>, with respect to hydrogen peroxide using the answer from (b)(iii), the stoichiometry of Reaction 1 and data from Mixture 1. The total volume of each Mixture was 0.050 dm<sup>3</sup>.

(2)

 (v) Calculate a value for the rate constant of **Reaction 1** using data from Mixture 1 and your answers to (b)(ii) and (b)(iv). Include the units of the rate constant.

(2)



DO NOT WRITE IN THIS AREA

| (c) The activation energy for <b>Reaction 1</b> | may be found by repeating the experiment |
|-------------------------------------------------|------------------------------------------|
| at different temperatures.                      |                                          |

Each student carried out an experiment at a different temperature. One of the students misread the thermometer in their experiment.

| ln rate | Т/К   | 1 ÷ <i>T</i><br>∕ K <sup>−1</sup> |
|---------|-------|-----------------------------------|
| -1.8    | 333   | 0.00300                           |
| -2.5    | 323   | 0.00310                           |
| -3.6    | 308   | 0.00325                           |
| -4.0    | 307   | 0.00326                           |
| -4.7    | 291.5 | 0.00343                           |
| -6.0    | 278   | 0.00360                           |

The activation energy,  $E_a$ , for a reaction may be found by plotting a graph of ln rate against 1/T.

The gradient of the resulting line of best fit can be used in the Arrhenius equation to determine a value for  $E_a$ , in kJ mol<sup>-1</sup>.

(i) Determine the value for  $E_a$  for **Reaction 1** by plotting a graph using the axes provided.

You should take into account the error made by one of the students.

ln rate = 
$$-\frac{E_a}{R} \times \frac{1}{T}$$
 + constant  $R = 8.31 \,\mathrm{J \, K^{-1} \, mol^{-1}}$ 



DO NOT WRITE IN THIS AREA



**17** The question is about lattice energies.

The table shows energy values used in a Born–Haber cycle for magnesium chloride, MgCl<sub>2</sub>.

| Energy change                                      | Label | Value / kJ mol <sup>-1</sup> |
|----------------------------------------------------|-------|------------------------------|
| Enthalpy change of atomisation of magnesium        | A     | +148                         |
| First ionisation energy of magnesium               | В     | +738                         |
| Second ionisation energy of magnesium              | С     | +1451                        |
| Enthalpy change of atomisation of chlorine         | D     | +122                         |
| Lattice energy of magnesium chloride               | E     | -2526                        |
| Enthalpy change of formation of magnesium chloride | F     | -641                         |

(a) (i) Complete the Born–Haber cycle for magnesium chloride by adding labels for each of the four energy changes and writing formulae in the two empty boxes.

(3)



P 7 3 4 5 6 A 0 1 4 2 8

| IIS AREA                  | (ii)  | Calculate a value for the electron affinity of chlorine, in kJ mol <sup>-1</sup> , using the data in the table and the completed Born–Haber cycle.                                                               |
|---------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DO NOT WRITE IN THIS AREA |       |                                                                                                                                                                                                                  |
|                           | (iii) | Explain why, when magnesium reacts with chlorine, MgCl <sub>2</sub> is formed rather than MgCl <sub>3</sub> .                                                                                                    |
| S AREA                    |       |                                                                                                                                                                                                                  |
| DO NOT WRITE IN THIS AREA |       |                                                                                                                                                                                                                  |
| DT WR                     |       |                                                                                                                                                                                                                  |
| DO NG                     | (iv)  | Calculate the standard molar enthalpy change of solution of magnesium chloride, in kJ mol <sup>-1</sup> , using the data shown and the value for the lattice energy, LE[MgCl <sub>2</sub> ], given in the table. |
|                           |       | Data $\Delta_{hyd}H^{\ominus}[Mg^{2+}(g)] = -1920 \text{ kJ mol}^{-1}$ $\Delta_{hyd}H^{\ominus}[Cl^{-}(g)] = -364 \text{ kJ mol}^{-1}$                                                                           |
| AREA                      |       |                                                                                                                                                                                                                  |
| IN THIS                   |       |                                                                                                                                                                                                                  |
| DO NOT WRITE IN THIS AREA |       |                                                                                                                                                                                                                  |
| DON                       |       |                                                                                                                                                                                                                  |
|                           |       |                                                                                                                                                                                                                  |

P 7 3 4 5 6 A 0 1 5 2 8

(2)

(2)

(2)

\*(b) Lattice energies from the Born–Haber cycle are based on experimental values. Theoretical lattice energies can also be calculated. Experimental and theoretical values for three different crystal lattices are shown.

| Compound                             | Experimental lattice energy<br>/ kJ mol <sup>-1</sup> | Theoretical lattice energy<br>/ kJ mol <sup>-1</sup> |
|--------------------------------------|-------------------------------------------------------|------------------------------------------------------|
| sodium fluoride NaF                  | -918                                                  | -912                                                 |
| magnesium fluoride MgF <sub>2</sub>  | -2957                                                 | -2913                                                |
| magnesium chloride MgCl <sub>2</sub> | -2526                                                 | -2326                                                |

Discuss the reasons for the differences in these six values of lattice energy in terms of the structure and bonding in these three substances.

(6)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA



| XXXXX                                    |                                    |
|------------------------------------------|------------------------------------|
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
| DO NOT WRITE IN THIS AREA                |                                    |
|                                          |                                    |
|                                          |                                    |
| $\sim \infty$                            |                                    |
|                                          |                                    |
|                                          |                                    |
| ×z×                                      |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
| ×3×                                      |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
| ×Щ×                                      |                                    |
| × E                                      |                                    |
|                                          |                                    |
| $\otimes \overline{\mathbf{a}} \otimes$  |                                    |
|                                          |                                    |
|                                          |                                    |
| NOT WRITE IN THIS AREA                   |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
| 8                                        |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
| $\otimes \mathbf{\widetilde{u}} \otimes$ | (Total for Question 17 = 15 marks) |
| × et vi                                  |                                    |
|                                          |                                    |
| $\infty$                                 |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
| DO NOT WRITE IN THIS AREA                |                                    |
| $\otimes \mathbf{Q} \otimes$             |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |
|                                          |                                    |

| $CH_{3}CHO \xrightarrow{\text{Step 1}} CH_{3}CH(OH)CN \xrightarrow{\text{Step 2}} CH_{3}CH(OH)COOH \xrightarrow{\text{Step 3}} CH_{3}CH(OH)COOH$ | )COOCH <sub>3</sub> |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| (a) Name the reagent(s) in Step <b>1</b> and Step <b>2</b> .                                                                                     | (2)                 |
| Step 1                                                                                                                                           | (~/                 |
| Reagent(s)                                                                                                                                       |                     |
| Step 2                                                                                                                                           |                     |
| Reagent(s)                                                                                                                                       |                     |
| (b) (i) Complete the mechanism for Step 1, using curly arrows and relevant<br>lone pairs, charges and dipoles.                                   |                     |
| Ione pairs, charges and dipores.                                                                                                                 | (4)                 |
|                                                                                                                                                  |                     |
| НН                                                                                                                                               |                     |
| H H H H H H H H H C - C = 0                                                                                                                      |                     |
| H                                                                                                                                                |                     |
|                                                                                                                                                  |                     |
| ⁻C≡N                                                                                                                                             |                     |
|                                                                                                                                                  |                     |
|                                                                                                                                                  |                     |
|                                                                                                                                                  |                     |
|                                                                                                                                                  |                     |
|                                                                                                                                                  |                     |
|                                                                                                                                                  |                     |
|                                                                                                                                                  |                     |
|                                                                                                                                                  |                     |
|                                                                                                                                                  |                     |
|                                                                                                                                                  |                     |

P 7 3 4 5 6 A 0 1 8 2 8

| (ii)    | Explain why the 2-hydroxypropanoic acid, CH <sub>3</sub> CH(OH)COOH, produced is <b>not</b> optically active.                              | (3) |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------|-----|
|         |                                                                                                                                            |     |
|         |                                                                                                                                            |     |
|         |                                                                                                                                            |     |
| (c) (i) | State the type of reaction in Step <b>3</b> .                                                                                              | (1) |
| (ii)    | A small amount of a polymeric compound is formed during Step <b>3</b> .<br>Deduce the structure for the repeat unit of the polymer formed. | (1) |
|         |                                                                                                                                            |     |
|         |                                                                                                                                            |     |
|         |                                                                                                                                            |     |
|         |                                                                                                                                            |     |
|         |                                                                                                                                            |     |
|         |                                                                                                                                            |     |
|         |                                                                                                                                            |     |

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

- (d) The high-resolution proton nuclear magnetic resonance (NMR) spectrum of methyl 2-hydroxypropanoate gives four peaks, J, K, L and M.
   Peaks L and M are singlets with relative intensities of one and three respectively.
  - (i) Label the displayed formula to show the protons responsible for these two peaks.



(ii) Complete the table to show the expected number of hydrogen atoms and expected splitting pattern for peaks **J** and **K**.

(2)

(2)

| Peak | δ/ppm | Number of hydrogen atoms | Splitting<br>pattern |
|------|-------|--------------------------|----------------------|
| J    | 1.3   |                          |                      |
| K    | 4.1   |                          |                      |
| L    | 3.6   | 1                        | singlet              |
| М    | 3.7   | 3                        | singlet              |

### (Total for Question 18 = 15 marks)

#### **TOTAL FOR SECTION B = 49 MARKS**



#### **SECTION C**

#### Answer ALL the questions. Write your answers in the spaces provided.

**19** (a) Ethyl propanoate, CH<sub>3</sub>CH<sub>2</sub>COOCH<sub>2</sub>CH<sub>3</sub>, smells of pineapple and is used as a flavouring. It may be hydrolysed using hydrochloric acid as a catalyst to produce propanoic acid and ethanol.

 $\mathsf{CH}_3\mathsf{CH}_2\mathsf{COOCH}_2\mathsf{CH}_3(\mathsf{l}) \ + \ \mathsf{H}_2\mathsf{O}(\mathsf{l}) \ \rightleftharpoons \ \mathsf{CH}_3\mathsf{CH}_2\mathsf{COOH}(\mathsf{l}) \ + \ \mathsf{CH}_3\mathsf{CH}_2\mathsf{OH}(\mathsf{l})$ 

A mixture was prepared using 0.100 mol of ethyl propanoate and 0.200 mol of water containing the catalyst.

The mixture was left to reach equilibrium at 25 °C.

The equilibrium mixture contained 0.0440 mol of propanoic acid.

(i) Calculate the value for  $K_c$  for this equilibrium at 25 °C. Give your answer to an appropriate number of significant figures.

(4)

(ii) The standard enthalpy change,  $\Delta_r H^{\ominus}$ , for this reaction is close to, but not exactly zero. Explain this statement by considering the type and number of bonds being broken and made. No calculations are required.

DO NOT WRITE IN THIS AREA

| (iii) Deduce the effect of increasing the temperature on the total entropy change of this reaction, $\Delta S_{\text{total}}$ , and on the value of the equilibrium constant, $K_c$ .<br>Assume that $\Delta S_{\text{system}}$ does not change with temperature. |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| System                                                                                                                                                                                                                                                            | (3) |
|                                                                                                                                                                                                                                                                   |     |
|                                                                                                                                                                                                                                                                   |     |
|                                                                                                                                                                                                                                                                   |     |
| b) Propanoic acid is a weak acid.                                                                                                                                                                                                                                 |     |
| <ul> <li>(i) State the difference between a weak acid and a strong acid such as<br/>hydrochloric acid.</li> </ul>                                                                                                                                                 | (1) |
|                                                                                                                                                                                                                                                                   |     |
|                                                                                                                                                                                                                                                                   |     |
| (ii) Calculate the pH of 0.500 mol dm <sup>-3</sup> hydrochloric acid at 25 °C.                                                                                                                                                                                   | (1) |
|                                                                                                                                                                                                                                                                   |     |
|                                                                                                                                                                                                                                                                   |     |
|                                                                                                                                                                                                                                                                   |     |
|                                                                                                                                                                                                                                                                   |     |
|                                                                                                                                                                                                                                                                   | J   |

(iii) Calculate the pH of 0.500 mol dm  $^{\text{-3}}$  propanoic acid at 25 °C.

 $K_{\rm a}$  (propanoic acid) =  $1.30 \times 10^{-5}$  mol dm<sup>-3</sup> at 25 °C.

(3)

- (c) The number of moles of propanoic acid in a solution may be determined by titration with aqueous sodium hydroxide.
  - (i) Calculate the pH at the point in the titration where half the acid has been neutralised. You must show your working.

(2)

**DO NOT WRITE IN THIS AREA** 







**BLANK PAGE** 







**BLANK PAGE** 



|                                 | 0 (8) | (18)<br>4.0<br>He    | 2                                                                       | 20.2<br><b>Ne</b><br>10            | 39.9<br><b>Ar</b><br>argon     | 18            | 83.8<br>V                  | krypton<br>36                | 131.3         | Xe                     | 54           | [222] | Rn             | radon<br>86                   | eq                                                                                  |                          |                                             |       |                    |                    |  |
|---------------------------------|-------|----------------------|-------------------------------------------------------------------------|------------------------------------|--------------------------------|---------------|----------------------------|------------------------------|---------------|------------------------|--------------|-------|----------------|-------------------------------|-------------------------------------------------------------------------------------|--------------------------|---------------------------------------------|-------|--------------------|--------------------|--|
|                                 | 7     |                      | (17)                                                                    | 19.0<br>F<br>fluorine<br>9         | 35.5<br><b>Cl</b><br>chlorine  | 17            | 6.6/                       | bromine<br>35                | 126.9         | I<br>iodine            | 53           | [210] | At             | astatine<br>85                | Elements with atomic numbers 112-116 have been reported but not fully authenticated | 175                      | <b>Lu</b><br>lutetium<br>71                 | [257] | Ļ                  | lawrencium<br>103  |  |
|                                 | Q     |                      | (16)                                                                    | 16.0<br>O<br>oxygen<br>8           | 32.1<br>S<br>sulfur            | 16            | 0.6/                       | <b>Se</b><br>selenium<br>34  | 127.6         | Te<br>tellurium        | 52           | [506] | <b>P</b>       | polonium<br>84                | -116 have t<br>nticated                                                             | 173                      | <b>Yb</b><br>ytterbium<br>70                | [254] | No                 | nobelium<br>102    |  |
|                                 | ß     |                      | (15)                                                                    | 14.0<br>N<br>nitrogen<br>7         | 31.0<br><b>P</b><br>phosphorus | 15            | 74.9                       | AS<br>arsenic<br>33          | 121.8         | <b>Sb</b>              | 51           | 209.0 | Bi             | bismuth<br>83                 | tomic numbers 112-116 hav<br>but not fully authenticated                            | 169                      | Tm<br>thulium<br>69                         | [256] | РW                 | mendelevium<br>101 |  |
|                                 | 4     |                      | (14)                                                                    | 12.0<br>C<br>carbon<br>6           | 28.1<br>Si<br>silicon          | 14            | 72.6<br>2                  | <b>حو</b><br>germanium<br>32 | 118.7         | Sn<br>‡                | 50           | 207.2 | PP             | lead<br>82                    | atomic nu<br>but not 1                                                              | 167                      | Er<br>erbium<br>68                          | [253] | Fn                 | fermium<br>100     |  |
|                                 | m     |                      | (13)                                                                    | 10.8<br><b>B</b><br>boron<br>5     | 27.0<br>Al<br>aluminium        | 13            | 69.7                       | gallium<br>31                | 114.8         | In                     | 46           | 204.4 | F              | thallium<br>81                | nents with                                                                          | 165                      | Ho<br>holmium<br>67                         | [254] |                    | einsteinium<br>99  |  |
| ients                           |       |                      |                                                                         |                                    |                                | (12)          | 65.4                       | 30 cc<br>30 cc               | 112.4         | Cd                     | 48           | 200.6 | Нg             | mercury<br>80                 | Elen                                                                                | 163                      | <b>Dy</b><br>dysprosium<br>66               | [251] | ປັ                 | californium<br>98  |  |
| I he Periodic ladie of Elements |       |                      |                                                                         |                                    |                                | (11)          | 63.5                       | copper<br>29                 | 107.9         | Ag<br>cilver           | 31.VEI<br>47 | 197.0 | Αu             | gold<br>79                    | [272]<br><b>Rg</b><br>111                                                           | 159                      | Tb<br>terbium<br>65                         | [245] | BK                 | berkelium<br>97    |  |
| le ol                           |       |                      |                                                                         |                                    |                                | (01)          | 58.7                       | <b>NI</b><br>nickel<br>28    | 106.4         | <b>Pd</b><br>nalladium | 46           | 195.1 | £              | platinum<br>78                | [271]<br><b>DS</b><br>damstadtium<br>110                                            | 157                      | <b>Gd</b><br>gadolinium<br>64               | [247] | Cm                 | aurium<br>96       |  |
|                                 |       |                      |                                                                         |                                    | Ş                              | (6)           | 58.9                       | <b>CO</b><br>cobalt<br>27    | 102.9         | Rh<br>rhodium          | 45           | 192.2 | <b>-</b>       | iridium<br>77                 | [268]<br>Mt<br>meitnerium<br>109                                                    | 152                      | Eu<br>europium<br>63                        | [243] | Am                 | americium<br>95    |  |
|                                 |       | 1.0<br>H<br>hydrogen | -                                                                       |                                    | (8)                            |               |                            |                              | 101.1         | Ru                     | 44           | 190.2 | S              | osmium<br>76                  | [277]<br><b>Hs</b><br>hassium<br>108                                                | 150                      | <b>Sm</b><br>samarium<br>62                 | [242] | Pu                 | plutonium<br>94    |  |
| ы<br>Б                          |       |                      |                                                                         |                                    | ĺ                              | $\mathbb{S}$  | 54.9                       | Mn<br>manganese<br>25        | [98]          | Tc                     | 43           | 186.2 | Re             | rhenium<br>75                 | [264]<br><b>Bh</b><br>bohrium<br>107                                                | [147]                    | Pm<br>promethium<br>61                      | [237] | dN                 | neptunium<br>93    |  |
|                                 |       |                      |                                                                         | mass<br>bol<br>umber               |                                | (9)           | 52.0                       | chromium<br>24               | 95.9          | Mo TC                  | 42           | 183.8 | 3              | tungsten<br>74                | [266]<br>Sg<br>seaborgium<br>106                                                    | 144                      | PrNdPmpraseodymiumneodymiumpromethium596061 | 238   |                    | uranium<br>92      |  |
|                                 |       | Key                  | relative atomic mass<br>atomic symbol<br>name<br>atomic (proton) number | Į                                  | (c)                            | 50.9          | <b>V</b><br>vanadium<br>23 | 92.9                         | Nb<br>Minimum |                        | 180.9        | Ta    | tantalum<br>73 | [262]<br>Db<br>dubnium<br>105 | 141                                                                                 | Pr<br>praseodymium<br>59 | [231]                                       | Pa    | protactinium<br>91 |                    |  |
|                                 |       |                      |                                                                         | relati<br><b>ato</b><br>atomic     |                                | (4)<br>;<br>; | 47.9                       | <b>11</b><br>titanium<br>22  | 91.2          | Zr                     | 40           | 178.5 | Hf             | hafnium<br>72                 | [261]<br>Rf<br>rutherfordium<br>104                                                 | 140                      | Cerium<br>58                                | 232   |                    | 90                 |  |
|                                 |       |                      |                                                                         |                                    |                                | (3)<br>1      | 45.0                       | <b>SC</b><br>scandium<br>21  | 88.9          | vttrium<br>mirati      | 39           | 138.9 | La*            | lanthanum<br>57               | [227]<br><b>AC*</b><br>actinium<br>89                                               |                          | S                                           |       |                    |                    |  |
|                                 | 2     |                      | (2)                                                                     | 9.0<br><b>Be</b><br>beryllium<br>4 | 24.3<br><b>Mg</b><br>magnesium | 12            | 40.1                       | calcium<br>20                | 87.6          | Sr                     | 38           | 137.3 |                | 56                            | [226]<br><b>Ra</b><br>radium<br>88                                                  |                          | * Lanthanide series<br>* Actinide series    |       |                    |                    |  |
|                                 | ~     |                      | (1)                                                                     | 6.9<br>Li<br>lithium<br>3          |                                | ÷             | 39.1                       | <b>K</b><br>potassium<br>19  | 85.5          | Rb<br>rubidium         | 37           | 132.9 | ۍ<br>ک         | caesium<br>55                 | [223]<br>Fr<br>francium<br>87                                                       |                          | * Lanth<br>* Actini                         |       |                    |                    |  |

P 7 3 4 5 6 A 0 2 8 2 8