Please check the examination details belo	ow before entering your candidate information
Candidate surname	Other names
Centre Number Candidate Nu Pearson Edexcel Interi	national Advanced Level
Monday 22 January	2024
Afternoon (Time: 1 hour 20 minutes)	Paper reference WCH13/01
Chemistry	* <
International Advanced Le UNIT 3: Practical Skills in	
You must have: Scientific calculator, ruler	Total Marks

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.
- Show all your working in calculations and include units where appropriate.

Information

- The total mark for this paper is 50.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Check your answers if you have time at the end.

Turn over 🕨

(4)
cal test and the expected positive result for both function tional group 3.

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

P 7 5 5 9 3 A 0 4 2 0

BLANK PAGE

2 An experiment was carried out to determine the concentration of citric acid in lemon juice using a titration.

Three students used the following procedure.

Procedure

- Step **1** Add 24.0 g of lemon juice to a 250 cm³ volumetric flask.
- Step **2** Make up the volume of the lemon juice to 250 cm³ using deionised water and mix thoroughly.
- Step **3** Pipette 25.0 cm³ of the diluted lemon juice into a conical flask and add a few drops of phenolphthalein indicator.
- Step **4** Titrate the diluted lemon juice with standardised sodium hydroxide of concentration 0.103 mol dm⁻³.

Student **A** obtained the results shown.

Titration	Rough	1	2	3
Burette reading (final) / cm ³	24.60	48.90	23.80	48.00
Burette reading (initial) / cm ³	0.00	24.60	0.00	23.80
Titre / cm ³	24.60	24.30	23.80	24.20

(a) Draw a circle around the concordant results in the table.

(1)

(b) Calculate the mean titre, using your answer from (a).

(1)

(1)

(c) The equation for the reaction between citric acid and sodium hydroxide solution is shown.

 $C_6H_8O_7(aq) + 3NaOH(aq) \rightarrow Na_3C_6H_5O_7(aq) + 3H_2O(l)$

(i) State the colour change that occurs at the end-point of the titration.

(ii) Calculate the percentage by mass of citric acid in the lemon juice, using your mean titre from (b).Give your answer to **two** significant figures.

[Concentration of NaOH(aq) = $0.103 \text{ mol dm}^{-3}$

 $M_{\rm r}$ of citric acid = 192]

(5)

	uggest a possible reason why the value obtained in (c) is valid, even though mon juice also contains some ascorbic acid and malic acid.	(1)
	vo other students, B and C , also followed the procedure to find the procentration of citric acid in similar samples of lemon juice.	
(i)	Student B added too much deionised water in Step 2 .	
	State how Student B should correct this mistake.	(1)
(ii)) Student C used sodium hydroxide solution labelled 0.103 mol dm ⁻³ that had been made up several months ago and stored since then.	
	Explain what effect this would have on the mean titre, compared to Student A .	(2)
	(Total for Question 2 = 12 ma	rks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

3 Seaweeds absorb iodide compounds from seawater. If seaweeds are dried and heated strongly, iodine can be obtained from the ash produced.
Procedure
Step 1 Heat the dried seaweed strongly to burn off any organic material.
Step 2 Add the ash produced in Step 1 to 25 cm³ of deionised water and boil for 5 minutes.
Step 3 Filter off the remaining solid, collecting the colourless filtrate containing iodide ions.
Step 4 Add 2 cm³ of dilute sulfuric acid, followed by 10 cm³ of '20 volume' hydrogen peroxide solution, H₂O₂(aq).
Step 5 Extract the iodine formed in Step 4 using cyclohexane as the solvent.
Step 6 Allow the cyclohexane to evaporate to leave behind iodine crystals.
(a) Suggest why the iodine-containing compounds do not burn off in Step 1.

(b) '20 volume' hydrogen peroxide solution means that 1 dm³ of the solution produces 20 dm³ of oxygen gas when it decomposes completely.

 $2H_2O_2(aq) \ \rightarrow \ 2H_2O(l) \ + \ O_2(g)$

Calculate the concentration of '20 volume' hydrogen peroxide solution in mol dm⁻³.

[Molar volume of a gas at room temperature and pressure (r.t.p.) = $24 \text{ dm}^3 \text{ mol}^{-1}$]

(2)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(c)	The	Step 4 , the iodide ions in the filtrate are oxidised to form iodine. e reaction takes place under acidic conditions and the hydrogen peroxide is luced to form a single product, water.	
	(i)	Write half-equations for each of these changes. State symbols are not required.	(2)
		Oxidation of iodide ions:	
		Reduction of hydrogen peroxide under acidic conditions:	
	(ii)	Write the overall equation for the reaction between iodide ions and hydrogen peroxide solution under acidic conditions. State symbols are not required.	
			(1)
	(iii)	State the colour of the aqueous iodine solution formed in Step 4 .	(1)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

.....

	[Density of cyclohexane = 0.78 g cm^{-3}]	
ARE	[Density of cyclonexarie = 0.76 g cm ⁻]	(4)
E I		
Z		
E "		
DO NOT WRITE IN THIS AREA		
.		
ARE .		
E		
2 . 1		
NOT WRITE IN THIS AREA		
õ -		
K		
SAR		
Ē		
N N		
DO NOT WRITE IN THIS AREA		
8		
S L		
~~~~		11



**BLANK PAGE** 





DO NOT WRITE IN THIS AREA

- 4 This question is about experiments involving ethanol.
  - (a) Ethanol and water mix in all proportions. The percentage of ethanol by volume in ethanol-water mixtures can be found by comparing the density of the mixture to the densities of ethanol-water mixtures of known composition, at a constant temperature.

Percentage of ethanol in mixture	Density ∕gcm⁻³
30	0.962
45	0.940
55	0.920
70	0.886
85	0.845
95	0.811

(i) Calculate the density of an ethanol-water mixture, sample **A**, 5.00 cm³ of which has a mass of 4.75 g.

(1)









DO NOT WRITE IN THIS AREA

**DO NOT WRITE IN THIS AREA** 

(c) A student determined a value for the enthalpy change of combustion of ethanol, using the apparatus shown.



#### Data

 $M_{\rm r}$  of ethanol = 46.0 Density of water =  $1.00 \,\mathrm{g \, cm^{-3}}$ Specific heat capacity of water =  $4.18 \text{ Jg}^{-1} \text{ °C}^{-1}$ Mass of ethanol burnt = 0.650 g Temperature of water before heating = 20.0°C Temperature of water after heating = 57.9°C (i) Calculate the energy transferred to the water. (1)

(ii) Calculate the amount of ethanol burnt in moles.



**DO NOT WRITE IN THIS AREA** 



(iii) Calculate the enthalpy change of combustion of ethanol in kJ mol⁻¹, using your answers to (c)(i) and (c)(ii).

Give your answer to an appropriate number of significant figures.



(d) Whilst evaluating the method used in (c), the student found a diagram of an alternative apparatus as shown.



TOTAL FOR PAPER = 50 MARKS



(3)

0 (8)	(18) 4.0 Het	2	20.2 Neon 10	39.9	Ar argon 18	83.8	Kr	36	131.3	Xe	54	[222]	Rn	radon 86	ted	_					
7		(17)	19.0 <b>F</b> fluorine 9	35.5	<b>Cl</b> chlorine 17	79.9	Br bromino	35	126.9	I	53	[210]	At	astatine 85	seen repor	ļ	c/	lutetium 71	[257]	Ļ	lawrencium 103
9		(16)	16.0 <b>O</b> oxygen 8	32.1	S sulfur 16	79.0	Se	34	127.6	Te	tellurum 52	[209]	Po	polonium 84	116 have t nticated	¢,	2 <b>4</b>	ytterbium 70	[254]	٥N	nobelium 102
5		(15)	14.0 N nitrogen 7	31.0	P phosphorus 15	74.9	As	ai sei il c 33	121.8	Sb	anumony 51	209.0	Bi	bismuth 83	tomic numbers 112-116 hav but not fully authenticated		Tm	thulium 69	[256]	РW	mendelevium 101
4		(14)	12.0 C carbon	28.1	<b>Si</b> silicon 14	72.6	Ge	germannum 32	118.7	Sn	20 1	207.2	<b>P</b> P	lead 82	atomic nur but not fi	ļ	) 1 1	erbium 68	[253]	E	fermium 100
ĸ		(13)	10.8 B boron 5	27.0	Al aluminium 13	69.7	Ga	gauluil 31	114.8	L I	49	204.4	F	thallium 81	Elements with atomic numbers 112-116 have been reported but not fully authenticated	1		Å	[254]	Es	einsteinium 99
					(12)	65.4	Zn	zinc 30	112.4	Cd	caamium 48	200.6	Hg	mercury 80	Elen	0.5		dysprosium 66	[251]	Cf	californium 98
					(11)	63.5	CL	copper 29	107.9	Ag	silver 47	197.0	٩n	gold 79	[272] <b>Rg</b> 111		4 T	F	[245]	Bk	berkelium 97
						58.7	ïz	nickei 28	106.4	Pd	pailaolum 46	195.1	۲ ِ	platinum 78	[271] DS damstadtium		کم ع	gadolinium 64	[247]	Cm	aurium 96
					(6)	58.9	S	codalt 27	102.9	Rh	45	192.2	<b>-</b>	177	[268] Mt meitnerium		7C1	europium 63	[243]	Am	americium 95
	1.0 H hydrogen	-			(8)	55.8	e.	1ron 26	101.1	Ru	rutnenium 44	190.2	S	osmium 76	[277] Hs hassium 108			samarium 62	[242]	Pu	plutonium 94
					(2)	54.9	Mn	manganese 25	[98]	Ч	tecnnetium 43	186.2	Re	rhenium 75	[264] Bh bohrium		<b>DD</b>	promethium 61	[237]	ЧN	neptunium 93
			mass bol umber	]	(9)	52.0	ບຼ	cnromium 24	95.9	٥. ۲o	42 43	183.8	3	tungsten 74	[266] Sg seaborgium			praseodymium neodymium promethium 59 60 61	238	⊃	uranium 92
		Key	relative atomic mass atomic symbol ^{name} atomic (proton) number		(5)	50.9	>	vanaoium 23	92.9	<b>N</b> b	41	180.9	Ta	tantalum 73	[262] Db dubnium		Pr	praseodymium 59	[231]	Pa	protactinium 91
			relati <b>ato</b> atomic		(4)	47.9	Ë	titamum 22	91.2	Zr	zircomum 40	178.5	Hf	hafnium 72	[261] Rf rutherfordium		ہے ⊆	cerium 58	232	Ч	thorium 90
					(3)	45.0	Sc	scandium 21	88.9	≻	yttrium 39	138.9	La*	lanthanum 57	[227] AC* actinium 80	5	SS				
2		(2)	9.0 <b>Be</b> beryllium 4	24.3	<b>Mg</b> magnesium 12	40.1	Ca	calcium 20	87.6	Sr	strontium 38	137.3		рагит 56	[226] <b>Ra</b> radium 88	3	* Lanthanide series	* Actinide series			
-		(1)	6.9 Li lithium	23.0	Na sodium 11	39.1	×	potassium 19	85.5	ß	37	132.9	ۍ ک	caesium 55	[223] Fr francium 87	5	* Lanth	* Actini			

P 7 5 5 9 3 A 0 2 0 2 0