

Mark Scheme (Results)

January 2025

Pearson Edexcel International Advanced Level In Statistics S3 (WST03) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2025 Question Paper Log Number P76395A Publications Code WST03_01_2501_MS All the material in this publication is copyright © Pearson Education Ltd 2025

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt[4]{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer

<u>Special notes for marking Statistics exams (for AAs only)</u>

- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.

Question Number		Scheme	Marks
1 (a)	Rankings 2, 9, 7, 8, 6, 5, 1, 4, 3, 10		
	$\sum d^2 = 2$	9 + 0 + 16 + 0 + 16 + 16 + 25 + 0 + 16 + 0 [= 98]	M1
	$r_s = 1 - \frac{1}{1}$	$\frac{6 \times '98'}{0(10^2 - 1)} = 0.4060$ awrt 0.406	M1 A1
			(4)
(b)	$H_0: \rho =$	$0 H_1: \rho > 0$	B1
	Critical	Value $r_s = 0.7455$ or CR: $r_s \dots 0.7455$	B1
	Not in th	e critical region/not significant/Do not reject H ₀	M1
		insufficient evidence of a positive correlation between the final position of a team in the English Premier League and their average match day attendance .	A1ft
			(4)
		Notes	Total 8
(a)	B1	For all 8 correct missing rankings. If in the table and in the working space and differe award the highest scoring response.	ent then
	M1	For an attempt at $\sum d^2$ (at least 5 correct values seen, with an attempt to add) May by 98	e implied
	M1	For using $1 - \frac{6\sum d^2}{10(99)}$ with their $\sum d^2$ (you will need to check their $\sum d^2$ if no val	ue shown)
	A1	awrt 0.406 Allow $\frac{67}{165}$ NB awrt 0.406 or $\frac{67}{165}$ scores 4/4	
	D1	For both hypotheses correct. Must be in terms of ρ or ρ_s (Condone <i>p</i>). Must be attac	ched to H ₀
(b)	B1	and H ₁	
	B1	For CV of 0.7455	
	M1	A correct statement ft part (a) and their CV– no context needed but do not allow cont non contextual statements. This may be implied by a correct contextual conclusion of	•
	A1ft	Correct conclusion in context. Must mention words in bold oe, ft their r in part (a) an critical value.	nd their

Question Number		Scheme	Marks
2 (a)	[0×5]	$\frac{+1\times38+2\times32+3\times17+4\times7+5\times1}{100}[=1.86]*$	B1*
			(1)
(b)	[r = 1.2]	203] because total expected frequency must equal 100	B1
			(1)
(c)	[The m than 5	nanager needed to do this] to ensure that [all] expected frequencies were greater	B1
			(1)
(1)	$H_0: \mathbf{P}\mathbf{G}$	bisson (distribution) is [a] suitable/ sensible (model)	D1
(d)	$H_1: P$	oisson (distribution) is not [a] suitable/ sensible (model)	B1
	v = [5 -	-1-1] = 3	B1
	$C_{3}^{2}(0.0)$	1) = 11.345 \Rightarrow CR: X ² 11.345	M1
	[Lies in	n the CR/Reject H ₀]	
	-	ent evidence to say that Poisson is not a suitable model	Alft
			(4)
		Notes	Total 7
(a)	B1*	For a correct method to show the mean is 1.86 (Ignore use of 6×0) Allow $\frac{[0]+38+64+51+28+5}{100}$	
(1)	B1	A correct explanation referring to the fact that total/sum expected frequency/ E_i must of	equal total
(b)		observed frequency e.g. $100 - (15.567 + 28.955 + 26.928 + 16.696 + 7.763 + 2.888) = 100 - (100 - 100$	r
		A correct explanation referring to the fact that [all] E_i /expected frequencies/values ne	
(c)	B1		
(d)	B1	Both hypotheses correct. Must mention Poisson/Po at least once.	
	B1	v = 3 This mark can be implied by a correct critical value of 11.345 if no DoF given	
	M1	For 11.345 or ft their degrees of freedom $\left[c_{4}^{2}(0.01) = 13.277\right]$	
	A1ft	A correct conclusion based on their χ^2 critical value. Must mention Poisson	

Question Number		Scheme	Marks
3 (a)	$\left[p = \frac{118}{40}\right]$	=]2.95	B1
	$[q=]\frac{350}{2}$	$\frac{0.05 - 40('2.95')^2}{39} = 0.05$	M1 A1
			(3)
(b)	$H_0: \mu_A =$	$H_{B} = H_{1}: \mu_{A} < \mu_{B}$	B1
	2	.65-'2.95'	
	$z = \pm - \sqrt{0}$	$\overline{0.07 - 0.05'}$	M1 M1
	$\sqrt{-1}$	$\frac{.65 - 2.95'}{.07} + \frac{0.05'}{40}$	
		$awrt \pm 5.83$	Al
	CV = 1.64		B1
		$_0$ There is significant evidence to support the biologist's belief	M1 A1ft
			(7)
(c)	Large sa	mple sizes so	(*)
		aple means are normally distributed (CLT)	B1
		$s_{B}^{2} = \sigma_{B}^{2}$	B1
			(2)
		Notes	Total 12
(a)	B1	2.95 only	1000112
	M1	For use of $\frac{\sum x^2 - n\overline{x}^2}{n-1}$ or ft their \overline{x} May be implied 0.05 provided no incorrect wor	king seen
	A1	сао	
(b)	B1	Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ	
	M1	For the denominator. Ft their 0.05	
	M1	Fully correct. Ft their 2.95 and their 0.05	
	A1	awrt 5.83 allow $ z = 5.827$ accept $p = 2.8(1) \ge 10^{-9}$	
	B1	CV =1.6449 or better	
	M1	A correct conclusion not in context ft their z value and CV or a correct p value (2 sf)	
	A1ft	ft their z value and their CV (NB their CV must be consistent with their z value) or a value (2 sf). Correct conclusion in context, need belief/claim . May be in words with region e.g. the weights in region A are smaller	
(c)	B1	Must comment on both sample means e.g. the sample means are normally distributed	1
	B1	Must comment on both variances/standard deviations e.g. sample variances can be u	
	DI	values for the population variances	

Question		Scheme	Marks
Number	2		
4 (a)		$2.5758 \times SE = 0.964 - 0.9$ or awrt $2.5758 \times x = 0.032$	M1 B1
	$\Rightarrow \frac{0.9}{2}$	$\frac{64 - 0.9}{\text{vrt } 2.5758} [= 0.0124] * \text{ or } x = \frac{0.032}{\text{awrt } 2.5758} [= 0.0124] *$	A1*
	$2 \times aw$	wrt 2.5758 awrt 2.5758	
	0.0		(3)
	$\left[\overline{x}=\right]^{0.9}$	$\frac{64+0.9}{2}$ [= 0.932] or [\overline{x} =]0.964-'2.5758'×0.0124[= awrt0.932] or	
(b)		2	M1
		$+'2.5758 \times 0.0124 [= a wrt 0.932]$	
		1.96×0.0124	M1 B1
	(0.9076.	, 0.9563) awrt (0.908, 0.956)	A1
			(4)
(c)	$2 \times z \times 0.0$	0124 = 0.04	M1
	<i>z</i> =1.612	2 awrt 1.61	A1
	P(Z > '1.	.61') = P(Z < -'1.61') = 1 - '0.9463'	M1
	= 0.0537	7 (Calculator gives 0.05371) awrt 0.0537	
	Confiden	nce level = $[100 \times](1 - 2 \times 0.0537)$ or $[100 \times](0.9463 \times 2 - 1)$	M1
	= 89.26	awrt 89.3	Al
			(5)
		Notes	Total 12
		For $2 \times z$ value \times SE = 0.964 – 0.9 oe or z value $\times x = 0.032$ oe where $2 < z < 3$	
(a)	M1	May be implied by $\frac{0.964 - 0.9}{2 \times \text{awrt } 2.5758}$ or $\frac{0.032}{\text{awrt } 2.5758}$	
	B 1	awrt 2.5758	
	A1*	Answer is given so no incorrect working must be seen. Must be at least one line of co	
	AI	working between M1 and the final answer. Must use awrt 2.5758 May be implied by 0.01242	awit
(1-)	M 1	Accept awrt 0.932 to imply a correct method.	
(b)	M1	If using a z value, then this must be awrt 2.5758 or consistent with the z value used in	n part (a)
	M1	For $\overline{x} \pm z$ value $\times 0.0124$ ft their \overline{x} and where $1.5 < z < 2$	
	B1	awrt 1.96	
	A1	for (awrt 0.908, awrt 0.956) Allow awrt 0.908 < μ < awrt 0.956	
(c)	M1	For $2 \times z \times 0.0124 = 0.04$ oe May be implied by awrt 1.61	
	A1	For $z = awrt 1.61$ For awrt 0.946 or awrt 0.947 or awrt 0.053 or awrt 0.054	
	M1	NB awrt 0.946 or or awrt 0.947 or awrt 0.053 or awrt 0.054	
	M	For $[100 \times](1-2 \times 0.0537')$ or $[100 \times]('0.9463' \times 2-1)$ ft their $P(Z > '1.61')$	
	M1	(May be implied by 89.26 or awrt 89.2 or awrt 89.3 or 0.8926 or awrt 0.892 or awrt 0).893)
	A 1	For awrt 89.3	
	A1	NB An answer of 89.2 or 89 can score M1A1M1M1A0	

Question Number			Scheme		Marks
5 (a)(i)	Quota sampling would		emove the need for a	sampling frame oe	B1
(ii)			/introduce] bias		B1
					(2)
(b)(i)	$\frac{(66+40)\times 120}{200} = 63.6$		M1 A1		
(ii)	$(66+40) - 63.6 = 42.4$ or $\frac{(66+40) \times 80}{200} = 42.4$		A1		
					(3)
(c)				d place lived are independent/not associated d placed lived are not independent/associated	B1
	Ob	served	Expected	$\frac{(O-E)^2}{E}$	
		66	63.6	$\frac{(O-E)^2}{E}$ $\frac{(66-63.6)^2}{63.6} \left[= \frac{24}{265} = 0.09056 \right]$	M1
		40	'42.4'	$\frac{(40-42.4')^2}{42.4'} \left[= \frac{36}{265} = 0.13584 \right]$	
	$\sum \frac{(O-E)}{E}$	$\frac{E)^2}{E} = 4.549 + $	'0.09056'+ '0.13584	·'	M1
	= 4.7	75		awrt 4.78	A1
	v = (2 - 1)	1)(3-1) = 2			B1
	$c_{2}^{2}(0.1) =$	$= 4.605 \Rightarrow CF$	$X: X^2 \dots 4.605$		B1ft
	-	•	2 3	sufficient evidence to suggest that students' ent of the place they live.	dA1ft
			Ν	Notes	(7) Total 12
(a)(i)	B1	subgroups, e	ffective for small pop	advantages (but not an exhaustive list): includes all ulations (Do not allow quick oe or cheap oe or eas	y oe)
(ii)	B1	random [sele	ection], difficulty in se		-
(b)(i)	M1			expected frequency May be implied by 63.6 or 42	2.4
(ii)	A1	For either 63			
(c)	AI B1	A1For both 63.6 and 42.4B1For both hypotheses correct. Must mention subject and place at least once. Do not allow correlation to imply association. Allow dependent to imply not independent			low
	M1	1	12	contributions to the χ^2 value ft their 63.6 and their	r 47 4
	M1	-	,	may be implied by a full χ^2 calculation, do not IS	sw)
	A1 P1		<u>B This implies M1M1</u>	A I y a correct critical value of 4.605	
	B1				
	B1ft			$\frac{1}{2} = \frac{1}{2} \left[c_{3}^{2}(0.1) = 6.251 \right]$	has the
		words subject	et and place (Allow 'w	g awarded. A correct contextual conclusion, which where they live' to imply 'the place they live'). Allow not allow correlation to imply association. Allow	ow an
	dA1ft			$\sum \frac{(O-E)^2}{E}$ and their χ^2 critical value This mark	-
		independent	of hypotheses		

Question Number		Scheme	Marks
6 (a)	$\left[E\left(\overline{X} \right) \right]$	$= \left]\frac{2a+3+4a+9}{2}\right]$	M1
	=	$\frac{6a+12}{2} = 3a+6 \neq a $ (So biased)	A1*
			(2)
(b)	'(3a+6)	-a = 2a + 6	B1ft
			(1)
(c)	$c = \frac{1}{'3'}$		B1ft
	$\left \frac{1}{3} \times (3a) \right $	(a+6)'+d=a	M1
	d = -2		Al
			(3)
(d)	$\frac{1}{3} \times 7.32$	$2 - 2' = 0.44$ or $3a + 6 = 7.32 \implies a = 0.44$	M1
	4×'0.44	.'+9	M1
	=10.76		Al
			(3)
		Notes	Total 9
(a)	M1	For using the formula $\left(\frac{a+b}{2}\right)$ May be implied by $\frac{6a+12}{2}$ or $3a+6$	·
	A1*	For $\frac{6a+12}{2}$ or $3a+6$ and $\neq a$ (Allow $3a+6-a$ or $2a+6$ and $\neq > 0$)	
(b)	B1ft	For $2a + 6$ or ft their part (a)	
(c)	B1	For $\frac{1}{3}$ or $\frac{1}{\text{coefficient of } a \text{ (from part a)}}$	
	M1	For $c \times$ their $(3a + 6) + d = a$ oe written or used May be implied by $d = -2$	
	A1	Сао	
(d)	M1	For their $c \times 7.32$ – their d oe or $7.32 = 3a + 6$	
	M1	For $4 \times$ their $0.44 + 9$	
	A1	cao Do not ISW but condone rounding	

Number		Scheme	Marks
7 (a)	$W = S_1$ -	$+S_2 + S_3 + L_1 + L_2 + L_3 + L_4$	
	$W \square N($	$(3 \times 7.7 + 4 \times 20, 3 \times 0.01^2 + 4 \times 0.02^2)$ So $W \square$ N(103.1, 0.0019)	M1 A1
	$\left[P(W > $	103.15 = $P\left(Z > \frac{103.15 - 103.1'}{\sqrt{0.0019}}\right) = P(Z > 1.1470)$	M1
	[1-0.87	[49] = 0.1251 (Calculator gives 0.12567) awrt 0.13	A1
	_		(4)
(b)	Let $Y =$	$L_1 - L_2$	
	$Y \square N(0$	$(0, 2 \times 0.02^2)$ So $Y \square N(0, 0.0008)$	M1 A1
	$P\left(Z > \frac{1}{2}\right)$	$\frac{0.01 - 0'}{\sqrt{0.0008'}} \text{or} P\left(Z < \frac{-0.01 - 0'}{\sqrt{0.0008'}}\right)$	M1
	$2 \times (1 - 0)$	$(0.6368) = 0.7264$ (Calculator gives 2×0.36183) awrt $0.724 \square 0.726$	M1 A1
			(5)
(c)	$T \square N()$	(μ, σ^2)	
	`````	n - 7.7n[=0]	M1
	$\sigma^2 = 0.0$	$0001n^2 + 0.0001n$	M1
	$\frac{2-0'}{\sqrt{0.0001n^2+0.0001n'}} = 1.99$		
	$0.0001n^2 + 0.0001n - 1.01[00755] = 0$		
	<i>n</i> = 100		
			(6)
		Notes	Total 15
(a)	N/1 1		
	M1	For setting up a normal distribution with a mean 103.1	1. 11
	A1	For a correct expression for variance (0.0019) or standard deviation (0.04358) Imp correct variance or a correct standard deviation	plied by a
	A1	<ul> <li>For a correct expression for variance (0.0019) or standard deviation (0.04358) Imp correct variance or a correct standard deviation</li> <li>For standardising using 103.15, their mean and their standard deviation</li> </ul>	
	A1 M1	<ul> <li>For a correct expression for variance (0.0019) or standard deviation (0.04358) Imported the correct variance or a correct standard deviation</li> <li>For standardising using 103.15, their mean and their standard deviation</li> <li>If their mean and/or their standard deviation/variance are incorrect then working must</li> </ul>	
	A1 M1 A1	<ul> <li>For a correct expression for variance (0.0019) or standard deviation (0.04358) Imported the correct variance or a correct standard deviation</li> <li>For standardising using 103.15, their mean and their standard deviation</li> <li>If their mean and/or their standard deviation/variance are incorrect then working must awrt 0.13</li> </ul>	
(b)	A1 M1 A1 M1	For a correct expression for variance (0.0019) or standard deviation (0.04358) Implement correct variance or a correct standard deviationFor standardising using 103.15, their mean and their standard deviationIf their mean and/or their standard deviation/variance are incorrect then working must awrt 0.13For $L_1 - L_2$ May be implied by a correct mean or variance	
(b)	A1 M1 A1 M1 A1	For a correct expression for variance (0.0019) or standard deviation (0.04358) Implement correct variance or a correct standard deviationFor standardising using 103.15, their mean and their standard deviationIf their mean and/or their standard deviation/variance are incorrect then working must awrt 0.13For $L_1 - L_2$ May be implied by a correct mean or varianceFor N(0, 0.0008)	st be shown
(b)	A1 M1 A1 M1	For a correct expression for variance (0.0019) or standard deviation (0.04358) Implement correct variance or a correct standard deviationFor standardising using 103.15, their mean and their standard deviationIf their mean and/or their standard deviation/variance are incorrect then working must awrt 0.13For $L_1 - L_2$ May be implied by a correct mean or varianceFor N(0, 0.0008)For standardising using 0.01, their mean and their standard deviation (May be implied 0.6368 or awrt 0.3632 or awrt 0.3618 or awrt 0.6382)	st be shown
(b)	A1 M1 A1 M1 A1 M1 M1 M1	For a correct expression for variance (0.0019) or standard deviation (0.04358) ImplementationFor standard ising using 103.15, their mean and their standard deviationIf their mean and/or their standard deviation/variance are incorrect then working must awrt 0.13For $L_1 - L_2$ May be implied by a correct mean or varianceFor N(0, 0.0008)For standardising using 0.01, their mean and their standard deviation (May be implied 0.6368 or awrt 0.3632 or awrt 0.3618 or awrt 0.6382)For 2 times <i>p</i> where 2 <i>p</i> is a probability (Calculator gives $2 \times 0.36183$ )	st be shown
	A1           M1           A1           M1           A1           M1           A1           M1           A1           M1           A1	For a correct expression for variance (0.0019) or standard deviation (0.04358) ImplementationFor standard ising using 103.15, their mean and their standard deviationIf their mean and/or their standard deviation/variance are incorrect then working must awrt 0.13For $L_1 - L_2$ May be implied by a correct mean or varianceFor N(0, 0.0008)For standard ising using 0.01, their mean and their standard deviation (May be implied 0.6368 or awrt 0.3632 or awrt 0.3618 or awrt 0.6382)For 2 times <i>p</i> where $2p$ is a probability (Calculator gives $2 \times 0.36183$ )For answers in the range awrt 0.724 – awrt 0.726	st be shown
(b)	A1 M1 A1 M1 A1 M1 M1 A1 M1 M1	For a correct expression for variance (0.0019) or standard deviation (0.04358) ImplicationFor standard ising using 103.15, their mean and their standard deviationIf their mean and/or their standard deviation/variance are incorrect then working must awrt 0.13For $L_1 - L_2$ May be implied by a correct mean or varianceFor N(0, 0.0008)For standardising using 0.01, their mean and their standard deviation (May be implied 0.6368 or awrt 0.3632 or awrt 0.3618 or awrt 0.6382)For 2 times <i>p</i> where $2p$ is a probability (Calculator gives $2 \times 0.36183$ )For a correct expression for $\mu$ Implied by a mean of 0	st be shown
	A1           M1           A1           M1           A1           M1           A1           M1           A1           M1           A1	For a correct expression for variance (0.0019) or standard deviation (0.04358) Imported variance or a correct standard deviation For standardising using 103.15, their mean and their standard deviation If their mean and/or their standard deviation/variance are incorrect then working musi- awrt 0.13 For $L_1 - L_2$ May be implied by a correct mean or variance For N(0, 0.0008) For standardising using 0.01, their mean and their standard deviation (May be implied 0.6368 or awrt 0.3632 or awrt 0.3618 or awrt 0.6382) For 2 times <i>p</i> where 2 <i>p</i> is a probability (Calculator gives 2 × 0.36183) For a correct expression for $\mu$ Implied by a mean of 0 For a correct expression for $\sigma^2$	st be shown
	A1 M1 A1 M1 A1 M1 M1 A1 M1 M1	For a correct expression for variance (0.0019) or standard deviation (0.04358) ImplicationFor standard ising using 103.15, their mean and their standard deviationIf their mean and/or their standard deviation/variance are incorrect then working must awrt 0.13For $L_1 - L_2$ May be implied by a correct mean or varianceFor N(0, 0.0008)For standardising using 0.01, their mean and their standard deviation (May be implied 0.6368 or awrt 0.3632 or awrt 0.3618 or awrt 0.6382)For 2 times <i>p</i> where $2p$ is a probability (Calculator gives $2 \times 0.36183$ )For a correct expression for $\mu$ Implied by a mean of 0	st be shown
	A1           M1           A1           M1           A1           M1           A1           M1	For a correct expression for variance (0.0019) or standard deviation (0.04358) Imported variance or a correct standard deviation For standardising using 103.15, their mean and their standard deviation If their mean and/or their standard deviation/variance are incorrect then working musi- awrt 0.13 For $L_1 - L_2$ May be implied by a correct mean or variance For N(0, 0.0008) For standardising using 0.01, their mean and their standard deviation (May be implied 0.6368 or awrt 0.3632 or awrt 0.3618 or awrt 0.6382) For 2 times <i>p</i> where 2 <i>p</i> is a probability (Calculator gives 2 × 0.36183) For a correct expression for $\mu$ Implied by a mean of 0 For a correct expression for $\sigma^2$ For standardising using 2, their mean and their standard deviation and set = to a <i>z</i> variance	st be shown
	A1           M1           A1           M1           A1           M1           A1           M1           M1	For a correct expression for variance (0.0019) or standard deviation (0.04358) Imported the correct variance or a correct standard deviation For standardising using 103.15, their mean and their standard deviation If their mean and/or their standard deviation/variance are incorrect then working musi- awrt 0.13 For $L_1 - L_2$ May be implied by a correct mean or variance For N(0, 0.0008) For standardising using 0.01, their mean and their standard deviation (May be implied 0.6368 or awrt 0.3632 or awrt 0.3618 or awrt 0.6382) For 2 times <i>p</i> where 2 <i>p</i> is a probability (Calculator gives 2 × 0.36183) For a correct expression for $\mu$ Implied by a mean of 0 For a correct expression for $\sigma^2$ For standardising using 2, their mean and their standard deviation and set = to a <i>z</i> variable 1.95 < $ z  < 2$	st be shown ed by awrt lue where

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom