සියලු ම හිමිකම් ඇවිරිණි / All Rights Reserved බස්නාහිර පළ

බස්නාහිර පළාත් අධනාපන දෙපාර්තමේන්තුව Western Province Educational Department

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2024

General Certificate of Education (Adv. Level) Examination, 2024

සංයුක්ත ගණිතය I Combined Mathematics I 10 E I

(2024.10.30 / 08.30 - 11.40)

පැය තුනයි Three hours අමතර කියවීම් කාලය

මිනිත්තු 10 යි

Additional Reading Time - 10 minutes

additional reading time to go through the question paper, select the questions and decide on the questions that you give priority in answering.

Index Number							
--------------	--	--	--	--	--	--	--

Instructions:

* This question paper consists of two parts.

Part A (Questions 01 - 10) and Part B (Questions 11 - 17)

* Part A:

Answer **all** questions. Write your answers to each question in the space provided. You may use additional sheets if more space is needed.

* Part B:

Answer five questions only. Write your answers on the sheets provided.

- * At the end of the time allotted, tie the answer scripts of the two parts together so that **Part A** is on top of **Part B** and hand them over to the supervisor.
- * You are permitted to remove only Part B of the question paper from the Examination Hall.

For Examiners' Use only

(10) Combined Mathematics II			
Part	Question No.	Marks	
	1		
	2		
	3		
	4		
A	5		
	6		
	7		
	8		
	9		
	10		
	11		
	12		
	13		
В	14		
	15		
	16		
	17		
	Total		
	Percentage		

	Filiai Wai Ks
umbers	
Vords	

Final Marks

Code Numbers

Marking Examine		
Checked by:	1	
Checked by.	2	
Supervised by:		

Combined Mathematics - I

1

Part A

Answer for **all** questions.

U .	Let $U_1 = 9$, and $U_{n+1} = 10U_n + 9$ for all $n \in \mathbb{Z}^+$. Using the Principle of Mathematical Induction
	prove that, $U_n = 10^n - 1$ for all $n \in \mathbb{Z}^+$.
UZ.	Sketch the graphs of $y = 2 x-3 - (x-3)$ and $y = 9 - x $ in the same diagram. Hence or otherwise find all real values of x satisfying the ineuality $2 x + x+3 > x+9$

If this committee consisting of 4 men and 3 women is to be formed from a group of 4 lady doctors, 5 engineers, 4 actresses and 3 male singers, in how many ways the committee can be formed? If this committee is going to take a photographs that can be taken.	/2024/10/E-I	Western Pro	vince Educational Department
	Indicate the complex numb $ z_2 - 2 = \sqrt{2}$. Hence, ex	bers z_1 and z_2 on an Argand diagram, such	that $ z_1 - 2 = z_1 - 2i $ and $z_1 = z_2$, in the form of
engineers, 4 actresses and 3 male singers, in how many ways the committee can be formed? If this committee is going to take a photograph in such a way that, no two men are next to each other,			
engineers, 4 actresses and 3 male singers, in how many ways the committee can be formed? If this committee is going to take a photograph in such a way that, no two men are next to each other,			
	engineers, 4 actresses and 3	3 male singers, in how many ways the committ	tee can be formed?
	engineers, 4 actresses and 3 If this committee is going to	s male singers, in how many ways the committed take a photograph in such a way that, no two	tee can be formed?
	engineers, 4 actresses and 3 If this committee is going to	s male singers, in how many ways the committed take a photograph in such a way that, no two	tee can be formed?
	engineers, 4 actresses and 3 If this committee is going to	s male singers, in how many ways the committed take a photograph in such a way that, no two	tee can be formed?
	engineers, 4 actresses and 3 If this committee is going to	s male singers, in how many ways the committed take a photograph in such a way that, no two	tee can be formed?

		$=\frac{1}{2\pi^2}$			
					 •••••
					 •••••
					 •••••
••••••					 •••••
••••••					 •••••
••••••		••••••			 •••••
••••••		••••••	••••••		 •••••
••••••					 •••••
					 •••••
•••••			••••••	••••••	 •••••
4	cabic units.				
	eabic units.				
4	eabic units.				
	eabic units.				
4	eabic units.				
	eabic units.				

AL/2	2024/10/E-I	Western Province Educational Department
07.	Let $x = \csc\theta - \sin\theta$ and Show that; $(x^2 + 4)\frac{d^2y}{dx^2} + x$	$y = \csc^n \theta - \sin^n \theta$ for a real parameter θ and a rational constant n . $\frac{dy}{dx} - n^2 y = 0$
08.		aight line l , so that the angle bisector of $l=0$ and $x+3y+1=0$ is
	x - y - 4 = 0.	
Com	bined Mathematics - I	5

AL/2	2024/10/E-I	Western Province Educational Department
09.	If the new circle, which passes through	$2y-1=0$ and the straight line $x-y+1=0$ intersects each other. In agh those points of intersection, also goes through the origin, them that the area of this new circle is $\left(\frac{n+1}{n}\right)\pi$.
10.	Sketch the graph of $y = \cos x$ in the $\frac{3}{2\pi} < \frac{\cos \theta}{\theta} < \frac{3\sqrt{3}}{\pi}$	he domain $x \in \left[0, \frac{\pi}{2}\right]$ Hence, when $\frac{\pi}{6} < \theta < \frac{\pi}{3}$, deduce that
	2π θ π	
Com	nbined Mathematics - I	6

සියලු ම හිමිකම් ඇවිරිණි / All Rights Reserved

බස්නාහිර පළාත් අධනපන දෙපාර්තමේන්තුව Western Province Educational Department

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2024

General Certificate of Education (Adv. Level) Examination, 2024

සංයුක්ත ගණිතය I

Combined Mathematics I

2024.10.30 / 08.30 - 11.40

Part B

- Answer **only five** Questions.
- 11. (a) Let's consider the quadratic equation $ax^2 + bx + c = 0$; for $a \ne 0$ and $a, b, c \in \mathbb{R}$. By using completing squares, show that $\frac{b \pm \sqrt{\Delta}}{-2a}$ are the roots of $ax^2 + bx + c = 0$. Here $\Delta = b^2 4ac$.

Hence, write down the necessary and sufficient condition for the quadratic equation $ax^2 + bx + c = 0$ to have only a pair of **rational roots**, when $a \ne 0$ and $a, b, c \in \mathbb{Q}$.

Now, let $F(x) = mx^3 + (n-m)x^2 - (m+2n)x + m + n$ for $m \neq 0$ and $m, n \in \mathbb{Q}$. Prove that 1 is a root of the cubic equation F(x) = 0.

Also show that, all the roots of the cubic equation further, if the equation F(x) = 0 has three real and equal (coincident) roots, deduce that |m|:|n|=1:2

(b) Let, H be a polynomial of order three. When H(x) is separately divided by $(x^2 + x - 2)$ and $(x^2 + 2x - 3)$ the remainder is x - 6.

Also, if it is given that the point A = (-1, -3) lies on the graph of y = H(x) then find H(x) and factorize it completely.

Further, write down the **domain** of H, so that all the images of the function H are non-negative.

12. (a) Find the **integers** A and B, such that, $A(2x+5)+B(2x+1)\equiv 4x+14$; for all $x\in\mathbb{R}$.

Now, write down the r^{th} term, U_r of the series, $\frac{1}{9} \cdot \frac{18}{3 \cdot 5 \cdot 7} + \frac{1}{27} \cdot \frac{22}{5 \cdot 7 \cdot 9} + \frac{1}{81} \cdot \frac{26}{7 \cdot 9 \cdot 11} + \cdots$ for $r \in \mathbb{Z}^+$

Hence, find f(r), such that $U_r = f(r) - f(r+1)$; for $r \in \mathbb{Z}^+$ and show that,

$$\sum_{r=1}^{n} U_r = \frac{1}{45} - \frac{1}{3^{n+1} (2n+3)(2n+5)} ; \text{ for } n \in \mathbb{Z}^+$$

Also, **deduce** that the infinite series $\sum_{r=1}^{\infty} U_r$ is convergent and find its sum.

Deduce for ther further that the sum of the infinite series $\sum_{r=2024}^{\infty} U_{r-2022}$.

- (b) Expand $(x+y)^n$; for $x, y \in \mathbb{R}$ and $n \in \mathbb{Z}^+$. Also write down the r+1 term, T_{r+1} of above expansion. Now consider the expansion of $(1+x)^{23}$, so that teh powers of x are increasing. If the co-efficients of the terms including x^n , x^{n+1} and x^{n+2} of this expansion, are lying in an arithmetic series, show that $\frac{1}{(21-n)!} + \frac{(n+2)(n+1)}{(23-n)!} = \frac{2(n+2)}{(22-n)!}$ Also find the values that n can take.
- 13. (a) Let $\mathbf{A} = \begin{pmatrix} a & 1 & b \\ -1 & -1 & a \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 1 & -1 & 1 \\ 1 & -1 & 0 \end{pmatrix}$ and $\mathbf{C} = \begin{pmatrix} 4 & 1 \\ a & 0 \end{pmatrix}$; where $a, b \in \mathbb{R}$. It is given that $\mathbf{A}\mathbf{B}^{\mathsf{T}} = \mathbf{C}$. Show that a = 2 and a = 3, and with these values for a and b, find $\mathbf{B}^{\mathsf{T}}\mathbf{A}$. Where \mathbf{B}^{T} denotes the transpose of the matrix \mathbf{B} .

 Write down \mathbf{C}^{-1} and using it show that matrix $\mathbf{D} = 4\begin{pmatrix} 1 & \lambda \\ 1 & -1 \end{pmatrix}$ such that $\mathbf{C}\mathbf{D} = 2\mathbf{I} + \mathbf{C}^2$, Where λ is a real contant that you should be determined.
 - (b) Sketch in an Argand diagram, the locus C, of the points representing complex numbers z satisfing |z|=1. Now, let $\omega=a(\cos\theta+i\sin\theta)$ such that a>0 and $\frac{-\pi}{2}<\theta<\frac{\pi}{2}$. Draw the locus of ω in the argand diagram. When ω lie on C, then show that $\omega-\frac{1}{\omega}$ is **purely imaginary** and the complex number $\omega-\frac{1}{\omega}$ lies between -2i and 2i an the imaginary axis. Futher more, when $\omega=\frac{1}{2}\Big(1-\sqrt{3}i\Big)$, using the **moivre's theorem** show that $\Big(1+\omega\Big)^{24}+\Big(1+\overline{\omega}\Big)^{24}=2\Big(729\Big)^2$
- 14. (a) The adjoining figure depicts, a quadrilateral OPQR which is inscribed in a semi circle of radius r and centre O. Here if it is given that $O\hat{R}Q = \theta$; $0 < \theta < \frac{\pi}{2}$ and OP / / RQ then show that the area S of the triangle quadri lateral is, $S = \frac{r^2}{2} (\sin \theta + \sin 2\theta)$. Hence, deduce that, the area S of the quadrilateral is maximum, when $\theta = \cos^{-1} \left(\frac{\sqrt{33} 1}{8} \right)$.

(b) Let, $f(x) = \frac{bx + c}{(x - a)^2}$ such that $a, b, c \in \mathbb{Z} - \{0\}$ for $x \in \mathbb{R} - \{a\}$. Show that, for any value of a, b, c there exists a horizontal asymptote for the graph of y = f(x), at y = 0.

It there exist a vertical asymptotes at x = 1, find the value of a.

Also, find the **integer values** of b and c, such that, f(x), the first derivative of f(x) is given by $f'(x) = \frac{3-x}{(x-a)^3}$; for $x \in \mathbb{R} - \{a\}$ **Hence**, by finding the co-ordinates of the turning point, write down the intervals on which f(x) is decreasing and **the interval** on which f(x) is increasing **Deduce** the nature of the turning point.

Further, if it is given that, f''(x), the second derivative of f(x) is $f''(x) = \frac{2(x+2c)}{(x-a)^4}$; for $x \in \mathbb{R} - \{a\}$ then, find the co-ordinates of point of inflection and write down the intervals on which f(x) is concave down and the **interval** on which f(x) is concave up.

Sketch the graph of y = f(x) indicating the intercepts, asymptotes, turing point and point of inflection.

Now, let $A \equiv (2, 0)$. Find the equation of the tangent line drown to the graph of y = f(x) at A and write down the co-ordinates of the point B of which the tangent meets the graph again.

15. (a) Find the **integers** A and B such that

$$27x^3 - 18x^2 + 12 \equiv A(3x - 2)^2 + B(9x^2 - 12x + 8) + A(3x - 2)(9x^2 - 12x + 8) \text{ for all } x \in \mathbb{R}$$

Hence, write down $\frac{27x^3 - 18x^2 + 12}{(3x-2)^2(9x^2 - 12x + 8)}$ in partial fractions and find

$$\int \frac{27x^3 - 18x^2 + 12}{(3x - 2)^2 (9x^2 - 12x + 8)} \cdot dx$$

(b) Show that, $\frac{d\left[\ln\left(x+\sqrt{x^2-1}\right)\right]}{dx} = \frac{1}{\sqrt{x^2-1}}$. Hence, find $\int \frac{1}{\sqrt{x^2-1}} \cdot dx$.

Let $I = \int \sqrt{\tan x} \cdot dx$ and $J = \int \sqrt{\cot x} \cdot dx$ for $x \in \left(0, \frac{\pi}{2}\right)$. Using $\sin x - \cos x = t$ or otherwise show that, $I + J = \sqrt{2} \sin^{-1} \left(\sin x - \cos x\right) + C$, where C is a real constant. Using a suitable substitution, obtain a similar expression for I - J. **Hence,** find J and J.

Using $\int_{a}^{b} f(x) \cdot dx = \int_{a}^{b} f(a+b-x) \cdot dx$ where a > b and $a, b \in \mathbb{R}$ Hence, deduce that,

$$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sqrt{\tan x} \cdot dx = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sqrt{\cot x} \cdot dx \text{ and show that, } \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sqrt{\tan x} \cdot dx = \sqrt{2} \sin^{-1} \left(\frac{\sqrt{3} - 1}{2}\right).$$

(c) Using integration by parts or otherwise, find $\int x \sin^{-1} x \cdot dx$

16. Let $l_1 = kx - y + 1 = 0$; $k \in \mathbb{Z}^+$ and $l_2 = x - 2y + 3 = 0$. $l_1 = 0$ and $l_2 = 0$ intersect the coordinate axes. Let S = 0 is the circle which passes through the above mentioned points of intersections.

Find S and obtain the centre and the radius of the cricle. Also determine the value of k. Taking the same k value, find the point of intersection of $l_1 = 0$ and $l_2 = 0$. which is denoted by A.

Show that the **tangential chord** of the circle relative to A is 5x + y = 0.

Find the equations of angle bisectors of $l_1 = 0$ and $l_2 = 0$ and **deduce** the equation of the obtused angle bisector for $k \in \mathbb{Z}^+$.

Show that there are two circles, in which the centre lie on the **obtused** angle bisector and $l_1 = 0$ and $l_2 = 0$ are the tangents also with radius $\sqrt{5}$ units.

Show also that one of the equations of a circle is $S_1 \equiv x^2 + y^2 - 4x - 1 = 0$ and find the other equation of the circle $S_2 = 0$.

Let P = (-1, 1), show the point P lies outside the circle $S_1 = 0$. Show also that the tangents drawn to the $S_1 = 0$ from the point P are 2x + y + 1 = 0 and x - 2y + 3 = 0.

17. (a) Write down $\sin(A+B)$ in terms of $\sin A$, $\sin B$, $\cos A$ and $\cos B$. Hence, obtain a smilar expression for $\sin(A-B)$.

Deduce that $\sin\left(\frac{\pi}{2} - A\right) \equiv \cos A$ and $\sin(A - B) \cdot \sin(A + B) \equiv \sin^2 A - \sin^2 B$.

Further more **deduce** that $\cos 10^{\circ} \cdot \cos 30^{\circ} \cdot \cos 50^{\circ} \cdot \cos 70^{\circ} = \frac{3}{16}$

- (b) Let $T(x) \equiv 2 + \sin x \left(\sqrt{3} \cos x 2 \sin x \right)$ for $x \in \mathbb{R}$. Find the real constants for A, B and α such that $T(x) \equiv A + B \cos(2x a)$, where α ; $0 < \alpha < \frac{\pi}{2}$. Find the **range** of the function T for $\left[\frac{\pi}{6}, 2\pi \right]$ and sketch the graph of y = T(x) for the above domain, solve the equation T(x) = 2.
- (c) In the usual notation, state the sine rule for a triangle ABC. Hence, deduce the cosine rule.

Show that
$$\frac{(a+b-c)(a+c-b)}{(a+b+c)(b+c-a)} = \tan^2\left(\frac{A}{2}\right).$$