AS Level Maths: Graphs and Transformations

1 f(x) = (x+3)(x+2)(x-1)

- (a) Sketch the curve y = f(x), showing the points of intersection with the coordinate axis. (3)
- (b) Showing the coordinates of the points of intersection with the coordinate axis, sketch on separate diagrams the curves

(i)
$$y = f(x - 3)$$

$$(ii) y = f(-x)$$
 (2)

(Total for question 1 is 7 marks)

- 2 (a) Sketch on the same diagram the curves $y = x^2 + 5x$ and $y = -\frac{1}{x}$ (4)
 - (b) State, giving a reason, the number of real solutions to the equation $x^2 + 5x + \frac{1}{x} = 0$ (2)

(Total for question 2 is 6 marks)

3 The sketch shows the graph of y = f(x). The curve has a minimum at (-3,-2) and a maximum at (4,7).

Showing the coordinates of the points of intersection with the coordinate axis, sketch on separate diagrams the curves

(i)
$$y = f(x) + 2$$

(ii)
$$y = -f(x)$$

(Total for question 3 is 4 marks)

4 $f(x) = x^2 + 4x + 5$

- (a) Express f(x) in the form $(x + a)^2 + b$, and state the coordinates of the minimum point of y = f(x). (3)
- (b) Sketch the graph of y = f(x) showing the coordinates of intersection with the coordinate axis. (3)
- (c) Find the minimum points of these curves

$$(i) y = 2f(x)$$

$$(ii) y = f(2x)$$

(Total for question 4 is 8 marks)

$$f(x) = x^3 + 4x^2 - 5x$$

- (a) Sketch the curve y = f(x), showing the points of intersection with the coordinate axis. (3)
- (b) Showing the coordinates of the points of intersection with the coordinate axis, sketch on separate diagrams the curves

(i) y = f(x+1)

(1)
$$y - 1(x + 1)$$

(ii) y = f(2x)

(Total for question 5 is 7 marks)

Sketch graph of $y = \frac{1}{x} + 2$, showing the points of intersection with the coordinate axis and stating the equations of any asymptotes.

(Total for question 6 is 3 marks)

7

$$f(x) = (x+4)(x-1)(2-x)$$

- (a) Sketch the curve y = f(x), showing the points of intersection with the coordinate axis. (3)
- (b) Showing the coordinates of the points of intersection with the coordinate axis, sketch on separate diagrams the curves

(i)
$$y = f(x+2)$$

(ii)
$$y = -f(x)$$

(Total for question 7 is 7 marks)

8

$$f(x) = (x+3)(x-1)^2$$

- (a) Sketch the curve y = f(x), showing the points of intersection with the coordinate axis. (3)
- (b) Find the equation of y = f(x+2) in the form $y = (x+a)(x+b)^2$

(Total for question 8 is 5 marks)

(2)

9 (a) The curve $y = \frac{2}{x-1}$ is translated by four units in the positive x-direction.

State the equation of the curve after it has been translated.

(b) Describe fully the single transformation that transforms the curve $y = \frac{2}{x-1}$ to $y = \frac{3}{x-1}$ (2)

(Total for question 9 is 4 marks)

10 Figure 1 shows y = f(x)

Figure 1

- (a) Which figure shows y = 2f(x)?
- (b) Which figure shows y = f(2x)?

(Total for question 10 is 2 marks)

Given that f(x) = 10 when x = 4, which statement must be correct?

Tick (\checkmark) one box.

$$f(2x) = 20 \text{ when } x = 4$$

$$f(2x) = 10$$
 when $x = 8$

$$f(2x) = 5 \text{ when } x = 4$$

$$f(2x) = 10 \text{ when } x = 2$$

(Total for question 11 is 1 mark)

12 Curve C has equation $y = x^2$

C is translated by $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$ to give the equation C_1 .

Line *L* has equation y = x

L is stretched by scale factor 3 parallel to the x-axis to give the line L_1 .

Find the exact distance between the two intersection points of C_1 and L_1

(Total for question 12 is 6 marks)

- 13 The graph $y = \frac{1}{x}$ is translated by the vector $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$
 - (a) Write down the equation of the transformed graph.
 - (b) State the equations of the asymptotes of the transformed graph.

(Total for question 13 is 3 marks)

- 14 The graph $y = \frac{1}{x}$ is translated by the vector $\begin{bmatrix} 0 \\ 2 \end{bmatrix}$
 - (a) Write down the equation of the transformed graph.
 - (b) State the equations of the asymptotes of the transformed graph.

(Total for question 14 is 3 marks)

- 15 (a) Sketch the curve $y = (x a)(5 x)^2$ where 0 < a < 5 indicating the coordinates of the points where the curve and the axes meet.
 - (b) Hence solve, $(x a)(5 x)^2 > 0$ giving your answer in set notation form.

(Total for question 15 is 5 marks)

16 Sketch the following curves.

(a)
$$y = \frac{3}{x^2}$$

(b)
$$y = x^3 - 8x^2 + 16x$$

(Total for question 16 is 7 marks)

$$f(x) = (x+4)(2x-5)^2$$

- (a) Sketch the curve y = f(x), showing the points of intersection with the coordinate axis. (3)
- (b) Deduce the values of x for which
 - (i) $f(x) \ge 0$

(ii)
$$f(2x) = 0$$

(Total for question 2 is 6 marks)

23 The curve C has equation

$$y = \frac{k^2}{x} - 2 \qquad x \in \mathbb{R}, \ x \neq 0$$

where k is a constant.

(a) Sketch C, stating the equation of the horizontal asymptote

(3)

The line *l* has equation y = -3x + 4

(b) Show that the x coordinate of any point of intersection of l with C is given by a solution of the equation

$$3x^2 - 6x + k^2 = 0 (2)$$

(c) Hence find the exact values of k for which l is a tangent to C.

(3)

(Total for question 23 is 8 marks)

24 $f(x) = (x+2)(x-3)^2$

(a) Sketch the curve y = f(x), showing the points of intersection with the coordinate axis. (3)

Given that k is a constant and the curve with equation y = f(x + k) passes through the origin,

(b) find the two possible values of k. (2)

(Total for question 24 is 5 marks)

25 (a) Using algebra, find all the solutions to the equation $3x^3 - 11x^2 + 6x = 0$ (3)

(b) Hence find all the real solutions of $3(y+2)^6 - 11(y+2)^4 + 6(y+2)^2 = 0$ (3)

(Total for question 25 is 6 marks)