P2 January 2002

Given that $p = \log_q 16$, express in terms of p,

- (a) $\log_q 2$,
- (2) $(b) \log_q (8q).$

(a) Given that $3 + 2 \log_2 x = \log_2 y$, show that $y = 8x^2$.

(b) Hence, or otherwise, find the roots α and β , where $\alpha < \beta$, of the equation

$$3 + 2 \log_2 x = \log_2 (14x - 3).$$

(c) Show that
$$\log_2 \alpha = -2$$
. (1)

(d) Calculate
$$\log_2 \beta$$
, giving your answer to 3 significant figures. (3)

P2 January 2004

Given that $\log_2 x = a$, find, in terms of *a*, the simplest form of

(a) $\log_2(16x)$, (2)

$$(b) \log_2\left(\frac{x^4}{2}\right). \tag{3}$$

(c) Hence, or otherwise, solve

$$\log_2(16x) - \log_2\left(\frac{x^4}{2}\right) = \frac{1}{2},$$

giving your answer in its simplest surd form.

(4)

(4)

(3)

(3)

P2 June 2004

Given that $\log_5 x = a$ and $\log_5 y = b$, find in terms of *a* and *b*,

(a)
$$\log_5\left(\frac{x^2}{y}\right)$$
, (2)

(b) $\log_5(25x\sqrt{y})$. (3)

It is given that $\log_5\left(\frac{x^2}{y}\right) = 1$ and that $\log_5(25x\sqrt{y}) = 1$.

(c) Form simultaneous equations in a and b.

(1)

(3)

(4)

(3)

(d) Show that a = -0.25 and find the value of b. (2)

Using the value of *a* and *b*, or otherwise,

(e) calculate, to 3 decimal places, the value of x and the value of y.

C2 January 2005

Find, giving your answer to 3 significant figures where appropriate, the value of x for which

- (a) $3^x = 5$, (3)
- (b) $\log_2(2x+1) \log_2 x = 2$.

C2 June 2005

Solve

- (a) $5^x = 8$, giving your answer to 3 significant figures, (3)
- (b) $\log_2(x+1) \log_2 x = \log_2 7$.

C2 June 2006

- (i) Write down the value of $\log_6 36$.
- (ii) Express $2 \log_a 3 + \log_a 11$ as a single logarithm to base *a*.

C2 June 2006

(a) Sketch the graph of $y = 3^x$, $x \in \mathbb{R}$, showing the coordinates of the point at which the graph meets the y-axis.

C2 January 2007

Solve the equation $5^x = 17$, giving your answer to 3 significant figures.

(3)

(2)

(4)

(1)

(3)

C2 June 2007

- (a) Find, to 3 significant figures, the value of x for which $8^x = 0.8$.
- (*b*) Solve the equation

$$2\log_3 x - \log_3 7x = 1.$$

C2 January 2008

Given that a and b are positive constants, solve the simultaneous equations

$$a = 3b$$
,

$$\log_3 a + \log_3 b = 2.$$

Give your answers as exact numbers.

(6)

C2 June 2008

- (a) Find, to 3 significant figures, the value of x for which $5^x = 7$.
- (b) Solve the equation $5^{2x} 12(5^x) + 35 = 0$.

(4)

(2)

C2 January 2009

Given that 0 < x < 4 and

$$\log_5 (4-x) - 2 \log_5 x = 1$$
,

find the value of *x*.

C2 June 2009

(*a*) Find the value of *y* such that

$$\log_2 y = -3$$
.

(2)

(6)

(b) Find the values of x such th

$$\frac{\log_2 32 + \log_2 16}{\log_2 x} = \log_2 x$$

(5)

(2)

(6)

C2 January 2010

(*a*) Find the positive value of *x* such that

$$64 = 2.$$

(b) Solve for x

$$\log_2(11 - 6x) = 2\log_2(x - 1) + 3.$$

C2 June 2010

(*a*) Given that

$$2\log_3(x-5) - \log_3(2x-13) = 1,$$

 \log_x

show that $x^2 - 16x + 64 = 0$.

(b) Hence, or otherwise, solve $2 \log_3(x-5) - \log_3(2x-13) = 1$.

(2)

(5)

C2 January 2011

- (a) Sketch the graph of $y = 7^x$, $x \in \mathbb{R}$, showing the coordinates of any points at which the graph crosses the axes.
- (*b*) Solve the equation

$$7^{2x} - 4(7^x) + 3 = 0,$$

giving your answers to 2 decimal places where appropriate.

(6)

(2)

(2)

(3)

(3)

(5)

(2)

C2 June 2011

Find, giving your answer to 3 significant figures where appropriate, the value of x for which

- (a) $5^x = 10$,
- (b) $\log_3(x-2) = -1$.

C2 January 2012

Given that $y = 3x^2$,

- (*a*) show that $\log_3 3y = 1 + 2 \log_3 x$.
- (b) Hence, or otherwise, solve the equation

$$1 + 2 \log_3 x = \log_3 (28x - 9).$$

C2 June 2012

Find the values of x such that

$$2\log_3 x - \log_3(x - 2) = 2$$

C2 January 2013

Given that $2 \log_2(x + 15) - \log_2 x = 6$,

(a) show that $x^2 - 34x + 225 = 0$.

(5)

(b) Hence, or otherwise, solve the equation $2 \log_2(x+15) - \log_2 x = 6$.

ANSWERS

C2 January 2005 (*a*) *x* = 1.46 (*b*) *x* = 0.5

C2 June 2005

(a) 1.29 (b) $\frac{1}{6}$ C2 June 2006 (a) 2 (b) $\log_a 99$

C2 January 2007

x = 1.76

C2 June 2007

(a) -0.107 (b) x = 21

C2 January 2008

 $a = 3\sqrt{3}, \ b = \sqrt{3}$

C2 June 2008

(a) 1.21 (b) x = 1

C2 January 2009

 $x = \frac{4}{5}$

C2 June 2009

(a) $y = \frac{1}{8}$ or 0.125 (b) $x = \frac{1}{8}$

C2 January 2010

(a) x = 8 (b) $x = \frac{3}{2}$

C2 June 2010

(*b*) x = 8

C2 January 2011

(b) x = 0, x = 0.56

C2 June 2011

(a) 1.43 (b) $2^{\frac{1}{3}}$

C2 January 2012

(b) $x = \frac{1}{3}$ or x = 9

C2 June 2012

x = 3, x = 6