P2 January 2002

$$\mathbf{f}(x) = \left(1 + \frac{x}{k}\right)^n, \qquad k, n \in \mathbb{N}, \qquad n > 2.$$

Given that the coefficient of x^3 is twice the coefficient of x^2 in the binomial expansion of f(x),

(a) prove that
$$n = 6k + 2$$
.

Given also that the coefficients of x^4 and x^5 are equal and non-zero,

(b) form another equation in n and k and hence show that k = 2 and n = 14.

Using these values of *k* and *n*,

(c) expand f(x) in ascending powers of x, up to and including the term in x^5 . Give each coefficient as an exact fraction in its lowest terms.

P2 June 2002

(*a*) Write down the first four terms of the binomial expansion, in ascending powers of *x*, of $(1 + 3x)^n$, where n > 2.

(2)

(3)

(4)

(4)

Given that the coefficient of x^3 in this expansion is ten times the coefficient of x^2 ,

(*b*) find the value of *n*,

(c) find the coefficient of x^4 in the expansion.

(2)

(2)

P2 January 2003

The first three terms in the expansion, in ascending powers of x, of $(1 + px)^n$, are $1 - 18x + 36p^2x^2$. Given that n is a positive integer, find the value of n and the value of p.

(7)

P2 June 2003

The expansion of $(2 - px)^6$ in ascending powers of x, as far as the term in x^2 , is

$$64 + Ax + 135x^2$$
.

Given that p > 0, find the value of p and the value of A.

(7)

P2 November 2003

(*a*) Write down the first 4 terms of the binomial expansion, in ascending powers of x, of $(1 + ax)^n$, n > 2.

(2)

Given that, in this expansion, the coefficient of x is 8 and the coefficient of x^2 is 30,

(*b*) calculate the value of *n* and the value of *a*,

(4)

(2)

(c) find the coefficient of x^3 .

P2 June 2004

For the binomial expansion, in descending powers of x, of

$$\left(x^3 - \frac{1}{2x}\right)^{12}$$

(a) find the first 4 terms, simplifying each term.

(b) Find, in its simplest form, the term independent of x in this expansion.

(3)

(5)

P2 November 2004

(a) Find the first four terms, in ascending powers of x, in the binomial expansion of

$$\left(k + \frac{x}{2}\right)^3$$
, where k is a constant. (2)

Given that the third term of this series is $540x^2$,

(b) show that k = 6,

(2)

(c) find the coefficient of x^3 . (2)

Find the first three terms, in ascending powers of x, of the binomial expansion of $(3 + 2x)^5$, giving each term in its simplest form.

C2 June 2005

(a) Write down the first three terms, in ascending powers of x, of the binomial expansion of $(1 + px)^{12}$, where p is a non-zero constant.

(2)

(4)

(3)

(2)

(2)

(4)

(4)

Given that, in the expansion of $(1 + px)^{12}$, the coefficient of x is (-q) and the coefficient of x^2 is 11q,

(*b*) find the value of *p* and the value of *q*.

P2 January 2006

- (a) Write down the binomial expansion, in ascending powers of x, of $(1 + 6x)^4$, giving each coefficient as an integer.
- (b) Use your binomial expansion to find the exact value of 601^4 .

C2 January 2006

(a) Find the first 3 terms, in ascending powers of x, of the binomial expansion of

$$(1 + px)^9$$
,

where *p* is a constant.

The first 3 terms are 1, 36x and qx^2 , where q is a constant.

(*b*) Find the value of *p* and the value of *q*.

C2 June 2006

Find the first 3 terms, in ascending powers of x, of the binomial expansion of $(2 + x)^6$, giving each term in its simplest form.

- (a) Find the first 4 terms, in ascending powers of x, of the binomial expansion of $(1 2x)^5$. Give each term in its simplest form.
- (b) If x is small, so that x^2 and higher powers can be ignored, show that

$$(1+x)(1-2x)^5 \approx 1-9x.$$
 (2)

C2 June 2007

(a) Find the first four terms, in ascending powers of x, in the binomial expansion of $(1 + kx)^6$, where k is a non-zero constant.

(3)

(2)

(1)

(4)

Given that, in this expansion, the coefficients of x and x^2 are equal, find

- (b) the value of k,
- (c) the coefficient of x^3 .

C2 January 2008

- (a) Find the first 4 terms of the expansion of $\left(1+\frac{x}{2}\right)^{10}$ in ascending powers of x, giving each term in its simplest form.
- (b) Use your expansion to estimate the value of $(1.005)^{10}$, giving your answer to 5 decimal places.

(3)

(4)

C2 June 2008

(a) Find the first 4 terms, in ascending powers of x, of the binomial expansion of $(1 + ax)^{10}$, where a is a non-zero constant. Give each term in its simplest form.

Given that, in this expansion, the coefficient of x^3 is double the coefficient of x^2 ,

(*b*) find the value of *a*.

(2)

Find the first 3 terms, in ascending powers of x, of the binomial expansion of $(3 - 2x)^5$, giving each term in its simplest form.

(4)

C2 June 2009

(a) Find the first 3 terms, in ascending powers of x, of the binomial expansion of

 $(2 + kx)^7$

where k is a constant. Give each term in its simplest form.

(4)

(2)

Given that the coefficient of x^2 is 6 times the coefficient of x,

(b) find the value of k.

C2 January 2010

Find the first 3 terms, in ascending powers of x, of the binomial expansion of

 $(3-x)^{6}$

and simplify each term.

C2 June 2010

(a) Find the first 4 terms, in ascending powers of x, of the binomial expansion of $(1 + ax)^7$, where a is a constant. Give each term in its simplest form.

(4)

(4)

Given that the coefficient of x^2 in this expansion is 525,

(*b*) find the possible values of *a*.

(2)

Given that $\begin{pmatrix} 40 \\ 4 \end{pmatrix} = \frac{40!}{4!b!}$,

(a) write down the value of b.

In the binomial expansion of $(1 + x)^{40}$, the coefficients of x^4 and x^5 are p and q respectively.

(b) Find the value of p.

 \underline{q}

(3)

(1)

C2 June 2011

(a) Find the first 3 terms, in ascending powers of x, of the binomial expansion of

 $(3 + bx)^5$

where b is a non-zero constant. Give each term in its simplest form.

(4)

Given that, in this expansion, the coefficient of x^2 is twice the coefficient of x,

```
(b) find the value of b.
```

(2)

C2 January 2012

(a) Find the first 4 terms of the binomial expansion, in ascending powers of x, of

$$\left(1+\frac{x}{4}\right)^8$$

giving each term in its simplest form.

(b) Use your expansion to estimate the value of $(1.025)^8$, giving your answer to 4 decimal places.

(3)

C2 June 2012

Find the first 3 terms, in ascending powers of x, of the binomial expansion of

 $(2-3x)^5$,

giving each term in its simplest form.

C2 January 2013

Find the first 3 terms, in ascending powers of x, in the binomial expansion of

 $(2-5x)^{6}$.

Give each term in its simplest form.

(4)

ANSWERS:

C2 January 2005

 $243 + 810x + 1080x^2$

C2 June 2005

(a) $1 + 12px + \frac{12 \times 11}{2} (px)^2$ (b) p = -2, q = 24

C2 January 2006

(a) $1+9px+\frac{9}{2}(px)^2$ (b) p=4; q=576

C2 June 2006

 $64 + 192x + 240x^2$

C2 January 2007

(a) $1 - 10x + 40x^2 - 80x^3 + \dots$

C2 June 2007

(a) $1 + 6kx + \frac{6 \times 5}{2} (kx)^2 + \frac{6 \times 5 \times 4}{3 \times 2} (kx)^3$ (b) $\frac{2}{5}$ (c) $\frac{32}{25}$

C2 January 2008

(a) $1 + 5x + 11.25x^2 + 15x^3$ (b) 1.05114

C2 June 2008

(a) $1 + 10ax + 45(ax)^2 + 120(ax)^3 + ...$ (b) a = 0.75

C2 January 2009

 $243 - 810x + 1080x^2$

C2 June 2009

(a) $128 + 448kx + 672k^2x^2$ (b) k = 4

C2 January 2010

729 $-1458x + 1215x^2$

C2 June 2010

(a) $1 + 7ax + 21a^2x^2 + 35a^3x^3$ (b) 6.133

C2 January 2011 (a) 36 (b) 7.2 C2 June 2011 (a) 243 + 405bx + 270b²x² + ... (b) b = 3 C2 January 2012 (a) 1 + 2x + $\frac{7}{4}x^2$ + $\frac{7}{8}x^3$ (b) 1.2184

C2 June 2012

 $32 - 240x + 720x^2$